Im September 2019 startete eine neue Max-Planck-Forschungsgruppe am MPA: Adrian Hamers trat seine Postdoc-Stelle am Institut an und baut derzeit seine Gruppe zur Erforschung von Mehrfach-Stern-Systemen auf. Solche Systeme sind in der Astrophysik von großer Bedeutung, da sie zu energiereichen astrophysikalischen Phänomenen wie Typ Ia Supernovae und Gravitationswellenereignissen führen können. Das Hauptziel ist es, gleichzeitig schnelle und detaillierte Modellrechnungen zu verwenden, um statistische Vorhersagen für Beobachtung von Supernovae und Gravitationswellen zu treffen. mehr

Quasare gehören zu den hellsten permanenten Quellen am Himmel. Dank ihrer hohen Leuchtkraft lassen sie sich auch zu frühen kosmischen Zeiten beobachten, wo - überraschenderweise - diese ersten Quasare als bereits entwickelte Systeme erscheinen: sie enthalten schwarze Löcher mit über einer Milliarde Sonnenmassen in massereichen Galaxien mit hoher Sternentstehungsaktivität. Um ein derart schnelles Wachstum zu erklären, glauben die Theoretiker, dass sich diese Systeme in besonders dichten Umgebungen befinden müssen, in denen das Vorhandensein von riesigen Gasmengen einen effizienten Materiefluss auf ursprüngliche kleinere Schwarze Löcher ermöglicht. Ein internationales Team von Astronomen hat kürzlich zum ersten Mal klare Hinweise in Beobachtungen gefunden, dass dies tatsächlich der Fall ist. Der neue "Panorama"-Spektrograph namens MUSE enthüllte, dass die meisten frühen Quasare von großen Mengen an kühlem Gas umgeben sind. Dieser reine „Kraftstoff“ fällt auf die primordialen Galaxien und befeuert sowohl das Wachstum ihrer Sternmasse als auch des Schwarzen Lochs im Zentrum. mehr

Das Hochleistungsrechenzentrum Stuttgart (HLRS) hat den MPA-Forscher Dylan Nelson und seine Kollegin Annalisa Pillepich vom Max-Planck-Institut für Astronomie mit dem "Golden Spike Award" für TNG50 ausgezeichnet: eine hochauflösende Simulation der Galaxienentwicklung vom Urknall bis heute. Der Gold Spike Award würdigt die drei herausragendsten Projekte des Jahres, die Berechnungen an den Clustern des Rechenzentrums durchgeführt haben. mehr

Kugelsternhaufen sind die dichtesten gravitativ gebundenen Sternsysteme im Universum. Man findet sie in allen Galaxien, auch in den kleinsten Zwerggalaxien, und sie können fast so alt sein wie das Universum selbst. Die Entstehung dieser mysteriösen Systeme war bisher allerdings weitgehend unverstanden. Wissenschaftler am MPA, der Universität von Helsinki und internationale Kollegen, haben jetzt eine aufwändige hydrodynamische Simulation präsentiert, die die gesamte Entstehung von Kugelsternhaufen in verschmelzenden Zwerggalaxien auflöst. Die Simulation liefert damit ein allgemeines Model zur Entstehung von Kugelsternhaufen in chemisch unentwickelten und dichten Regionen kleiner Galaxien im frühen Universum.      mehr

Die heutige Expansionsrate des Universums wird durch die sogenannte Hubble-Konstante beschrieben; allerdings liefern verschiedene Techniken inkonsistente Ergebnisse, wie schnell sich unser Universum tatsächlich ausdehnt. Ein internationales Team unter der Leitung des Max-Planck-Instituts für Astrophysik (MPA) hat nun zwei Gravitationslinsen als neue Werkzeuge eingesetzt, um die Abstände zu Hunderten von beobachteten Supernovae zu kalibrieren, und damit einen relativ hohen Wert für die Hubble-Konstante gemessen. Während die Unsicherheit noch relativ groß ist, ist dieser Wert höher als der auf Basis des kosmischen Mikrowellenhintergrundes. mehr

Das SRG (Spektrum-Röntgen-Gamma) Weltraumobservatorium hat vor kurzem mit dem ersten der sieben eROSITA-Teleskopmodule eines seiner zahlreichen Tests durchgeführt und einen kleinen Ausschnitt des extragalaktischen Himmels beobachtet. Die Ergebnisse stimmen mit den Erwartungen aus der Entwicklungsphase überein. Die Arbeiten zur Inbetriebnahme weiterer Module sind noch im Gange und werden in den kommenden Wochen abgeschlossen werden, so dass noch im Laufe dieses Jahres mit der vierjährigen Himmelsdurchmusterung begonnen werden kann. mehr

Heißes Plasma füllt den gesamten Raum in Galaxienhaufen und macht sie zu starken Quellen für Röntgenstrahlung. Während Dichte und Temperatur dieses Gases leicht gemessen werden können, sind seine Materialeigenschaften wie Viskosität und thermische Leitfähigkeit weitgehend unbekannt. Das Problem ist die wenig verstandene Rolle der schwachen Magnetfelder, die das Gas durchdringen. Solche Felder sind zu schwach, um die Bewegungen des Gases großflächig direkt zu beeinflussen, sie können aber die mikroskopischen Eigenschaften des Plasmas verändern. Jüngste Langzeitbeobachtungen des Coma-Galaxienhaufens im Röntgenbereich haben gezeigt, dass dies tatsächlich der Fall ist: das Verhalten des Gases unterscheidet sich deutlich von den Erwartungen an nicht magnetisiertes Plasma. mehr

Zur Redakteursansicht