SPICE verbindet stellares Feedback in den ersten Galaxien mit der kosmischen Reionisation

In der ersten Milliarde an Jahren wurde das kalte, neutrale Universum heiß und ionisiert. Man nimmt an, dass diese „Epoche der Reionisation“ auf die Strahlung von Sternen in den ersten Galaxien zurückzuführen ist. Die Natur dieser Galaxien zu verstehen, die für die Reionisation verantwortlich waren, bleibt eine Schlüsselfrage. Wissenschaftler am MPA haben eine Reihe von neuen Simulationen entwickelt, um systematisch zu verstehen, wie verschiedene Modi der Energie- und Massenzufuhr durch Sterne die ersten Galaxien beeinflussen. Nach diesen neuen Modellen führen kleine Unterschiede beim stellaren Feedback zu tiefgreifenden Änderungen in der Morphologie von Galaxien und der Geschwindigkeit, mit der sie das Universum ionisieren. Die Kombination dieser Erkenntnisse mit neuesten Beobachtungen wird dazu beitragen, Feedbackmodelle für die erste Milliarde Jahre des Universums einzuschränken. mehr

Während sie sich in ihrer Arbeit mit massereichen Objekten wie Neutronensternen und Schwarzen Löchern beschäftigt, liebt Martyna Chruslinska in ihrer Freizeit das schwerelose Gleiten auf Inlinern oder beim Eiskunstlaufen. mehr

Die energiereichsten Sternkollisionen im Universum

In dichten stellaren Umgebungen können Sterne zusammenstoßen. Befindet sich ein massereiches Schwarzes Loch in der Nähe – wie im Zentrum von Galaxien – können diese Kollisionen so energiereich sein, dass die beiden Sterne bei der Kollision vollständig zerstört werden und nur eine expandierende Gaswolke zurückbleibt. Während die Kollision selbst mehrere Tage lang sehr hell aufleuchtet, könnte es ein noch helleres Aufleuchten über mehrere Monate hinweg geben, wenn die Gaswolke von dem nahen Schwarzen Loch eingefangen wird. Ein Forscherteam unter der Leitung des MPA hat zum ersten Mal Beobachtungsdaten für solch gewaltige Ereignisse mit den beiden hochmodernen, am MPA entwickelten Programmen AREPO und MESA vorausgesagt. mehr

Was passiert, wenn man einen Stern in einen anderen Stern steckt?

Landet ein Stern in einem anderen Stern, so sind das für beide Sterne keine gute Nachricht. Unter den richtigen Bedingungen kann dies jedoch dazu führen, dass die Sterne zu einen einzigartigen Stern verschmelzen. Ist der eine Stern ein Neutronenstern (der kleine, kompakte Überrest einer Supernova-Explosion), kann die Verschmelzung dazu führen, dass der Neutronenstern im inneren des anderen Sterns sinkt und letztendlich dessen Kern ersetzt. Solche Sterne mit Neutronensternkernen werden Thorne-Żytkow-Objekte (TŻOs) genannt, nach Kip Thorne und Anne Żytkow, die ihre Existenz postuliert haben. Jetzt hat ein internationales Team von Astrophysiker*innen unter der Leitung des Max-Planck-Instituts für Astrophysik (MPA) neu bewertet, wie diese TŻOs aussehen und ob wir sie finden können. mehr

Laura Herold erhält Kippenhahn-Preis 2023

In einer einstimmigen Entscheidung verleiht die Preisjury den Rudolf-Kippenhahn-Preis 2023 an Dr. Laura Herold für ihre bahnbrechende Arbeit mit dem Titel „New Constraint on Early Dark Energy from Planck and BOSS data using the Profile Likelihood“. Ihre Beiträge haben bereits großen Einfluss auf die Forschung. mehr

Auf der Suche nach Schwächen im kosmologischen Standardmodell

Neue Computersimulationen verfolgen die Entstehung von Galaxien und die Entwicklung der großräumigen Struktur des Kosmos mit bisher unerreichter statistischer Präzision mehr

Kernkollaps-Supernovae unter dem Einfluss von schnellen Neutrino-Umwandlungen

Neutrinos, die leichtesten Elementarteilchen, sind der treibende Faktor bei Kernkollaps-Supernovae, dem gewaltsamen Tod von massereichen Sternen. Der Neutrino-getriebene Mechanismus geht davon aus, dass sie für den Energietransfer vom heißen Proto-Neutronenstern (PNS) auf das umgebende Material verantwortlich sind. Bisher nahmen numerische Simulationen an, dass die Neutrinos während der Ausbreitung ihren Flavor behalten. Max-Planck-Forscher haben nun aber gezeigt, dass die Berücksichtigung von Umwandlungen der verschiedenen Arten der Neutrinos einen direkten Einfluss auf die Supernova-Dynamik hat. mehr

Mehr anzeigen
Zur Redakteursansicht