Some unidentified features in one of the brightest stellar explosions ever witnessed, SN 2006gy, have now been explained by researchers at the Max Planck Institute for Astrophysics. The spectral lines arise from neutral iron - very unusual for such a high-energy event - and imply that more than a third of a solar mass of this heavy element was created. The dominance of iron in the spectrum rules out several previously proposed scenarios for SN 2006gy and instead opened up the door for a new one. more

New Hubble Constant Measurement Strengthens Discrepancy in Universe's Expansion Rate more

By examining the Auriga suite, a large sample of simulated Milky Way galaxies formed in the full cosmological context, scientists at MPA have been able to place constraints on the history of the Milky Way's formation. By comparing these simulations to observations of the Milky Way — and specifically to how fast stars of different metallicities in the inner regions of the Galaxy move around its centre — they were able to exclude certain formation histories. In particular they found that our galaxy had to be quite isolated with the last major merger happening over 12 billion years ago and with a galaxy less than 10% of the mass of the Milky Way. more

Researchers at the Leibniz Institute for Astrophysics in Potsdam (AIP), and the Max Planck Institute for Astrophysics in Garching (MPA), have investigated galactic radio objects that adopt shapes such as Christmas trees and harps. They were able to answer the old question of the transport of cosmic rays. more

The Spectrum-RG observatory, launched from Baikonur on July 13, 2019, now begins with scanning the entire sky. On December 8, the spacecraft moving on a wide orbit around the L2 liberation point at a distance of 1.5 million kilometres started rotating around the axis directed towards the Earth. Both, the ART-XC and eROSITA telescopes began scanning the sky along the big circle on the celestial sphere, thus marking the start of the 4-years long all-sky survey. more

Rather than trying to study special regions in large-volume simulations, scientists at MPA have used the IllustrisTNG model to create whole separate universes with a modified cosmology. Their study of these separate universes shows that when the baryon density (the density of ordinary matter) changes, the number of galaxies can increase or decrease depending on how this number is measured. Also, the large-scale distribution of matter is affected by the effects of baryons, with various measures reacting differently. more

In September 2019 a new Max Planck Research Group started at MPA: Adrian Hamers joined the institute and is currently building up his group to research multiple star systems. Such systems are of high importance in astrophysics, since they may lead to violent astrophysical phenomena such as Type Ia supernovae and gravitational wave events. The main goal is to use both fast and detailed modeling to make statistical predictions for observations of supernovae and gravitational waves. more

Go to Editor View