Forschungsmeldungen aus der Physikalischen Kosmologie am MPA

‚Prime Focus Spektrograph‘ am Subaru-Teleskop nimmt im Februar wissenschaftlichen Betrieb auf

Nach mehrjähriger Arbeit haben Forschende das Subaru-Teleskop mit einem neuen speziellen „Facettenauge“ ausgestattet. Dieses neue Instrument verfügt über etwa 2.400 Glasfasern, die über das extrem weite Sichtfeld des Primärfokus des Teleskops verteilt sind. So können gleichzeitig tausende Himmelsobjekte spektroskopisch beobachtet werden. Diese einmalige Leistungsfähigkeit wird der Forschung helfen, die Entstehung und Entwicklung von Galaxien und des Universums genau zu verstehen, sobald das Instrument im Februar 2025 seinen wissenschaftlichen Betrieb aufnimmt. mehr

Erste Schritte in Richtung der direkten Beobachtung einer großen Anzahl intergalaktischer Filamente im frühen Universum

Supercomputer-Simulationen sagen vorher, dass sich die Materie im Universum in einem wabenartigen System von Filamenten verteilt. Dieses wird auch das „kosmische Netz“ genannt, in dem sich Galaxien bilden und entwickeln. Der überwiegende Teil dieser komplizierten Struktur besteht aus diffusem Wasserstoffgas so geringer Dichte, dass es äußerst schwierig ist, es direkt zu beobachten. Ein vom MPA geleitetes Team hat ­die aktiven supermassereichen schwarzen Löcher in Galaxienpaaren, die sich in geringem Abstand befinden, ins Visier genommen, um die filamentären Strukturen des kosmischen Netzes im frühen Universum zu finden. Die Ergebnisse sind vielversprechend und enthüllen Hinweise auf Strukturen des kosmischen Netzes, die sich zwischen den beobachteten Paaren erstrecken –hervorragende Ziele für zukünftige ultratiefe Beobachtungen. mehr

<span><span><span><span>Was verraten uns großskalige Galaxienstrukturen über das Universum?</span></span></span></span>

Die großräumige Verteilung von Galaxien liefert wichtige Hinweise über die Natur der Dunklen Materie, die Eigenschaften der Dunklen Energie und den Ursprung unseres Universums. Jedoch ist es eine beachtliche Herausforderung, diese Informationen mit hoher Genauigkeit aus den Beobachtungen abzuleiten. Forscher am MPA entwickeln einen neuartigen Analyseansatz, bei dem sie die Entwicklung kosmischer Strukturen über ihre gesamte Entstehungsgeschichte verfolgen. Dies ermöglicht einen besonders detaillierten Vergleich zwischen theoretischen Modellen und Beobachtungsdaten sowie die sehr präzise Messung wichtiger Parameter der Dunklen Materie und der Dunklen Energie. mehr

Spiralen, Wellen und einfach nur Gleiten

Während sie sich in ihrer Arbeit mit massereichen Objekten wie Neutronensternen und Schwarzen Löchern beschäftigt, liebt Martyna Chruslinska in ihrer Freizeit das schwerelose Gleiten auf Inlinern oder beim Eiskunstlaufen. mehr

Wie „unscharf“ darf dunkle Materie sein? - Eine Gravitationslinse gibt die Antwort

Dunkle Materie, die mehr als 80 % der Masse im Universum ausmacht, absorbiert oder emittiert kein Licht und interagiert mit Licht und normaler (baryonischer) Materie nur durch ihre Gravitation. Die Natur der dunklen Materie ist eine der wichtigsten offenen Fragen in der Astrophysik und Kosmologie. Ein theoretisches Modell für dunkle Materie, die so genannte „Fuzzy Dark Matter“ (FDM, „unscharfe“ dunkle Materie), prägt dem Licht, das um eine massereiche Galaxie gekrümmt wird (eine sogenannte Gravitationslinse), eine charakteristische Signatur auf. Durch die Analyse eines Gravitationslinsensystems, das im Radiobereich mit extrem hoher Winkelauflösung beobachtet wurde, haben wir festgestellt, wie „unscharf“ die dunkle Materie sein kann. mehr

Mehr anzeigen
Zur Redakteursansicht