Cosmology News

Three years into its quest to reveal the nature of dark energy, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is on track to complete the largest map of the cosmos ever. The team will create a three-dimensional map of 2.5 million galaxies that will help astronomers understand how and why the expansion of the universe is speeding up over time. Scientists in Munich and Garching have contributed to the design of the survey strategy, planning and execution as well as developing key software and data management tools for the cosmology data analysis. more

Dark matter is the most abundant matter component in the universe. But while it influences all structure in the universe, its nature is still unknown. Among the many candidates is ultra-light dark matter, the lightest possible candidate for dark matter, which been receiving a lot of attention recently, as this might be probed by current and future experiments. MPA researchers have written a review on the current status of these models and their search for observational markers, introducing a division into three classes and showing how the rich phenomenology of this leading candidate for dark matter could help answer the question of what dark matter really is. more

How hot is the Universe today? How hot was it before? A new study, which has been published in the Astrophysical Journal, suggests that the mean temperature of gas in large structures of the Universe has increased ten times over the last 10 billion years, to reach about 2 million Kelvin today. more

Recently, astronomers discovered an extended glow of emission far beyond the stellar bodies of galaxies. While the emission is known to be associated with excited neutral hydrogen, the origin of this so called Lyman-alpha radiation is unknown. MPA researchers use new computational models to understand this emission, establishing that a large contribution is caused by light which originates from deep within galaxies but subsequently scatters at much larger distances. more

Recently, in correspondence with the 10th birthday of LOFAR, a core group of researchers including MPA scientists published the most stringent upper limits on the reionization signal from the early Universe. These observations are able to exclude some reionization models and constrain the thermal and ionization state of the intergalactic medium when the Universe was still in its infancy. more

Go to Editor View