Cosmology News

New analysis strengthens the hint of new physics in polarized radiation from the early Universe<br /> 

In 2020, a tantalizing hint of new physics violating “parity symmetry” was found in polarization data of the cosmic microwave background obtained with the Planck satellite at high frequencies. Based on the Planck data and a simplified assumption about the impact of the polarized dust emission in the Milky Way, the scientists reported a violation of the symmetry of the laws of physics under inversion of spatial coordinates with 99.2% confidence level. An international team led by MPA director Eiichiro Komatsu has now improved the analysis method. By considering the dust emission explicitly and using more data from not only Planck but also from WMAP the astrophysicists measured the parity-violating signal with 99.987% confidence level. If this should be confirmed in the future as a genuine cosmological signal, it would have profound implications for the fundamental physics behind dark matter, dark energy, and quantum gravity. more

Reflected quasar light powers giant cool gas nebulae

Already in the early Universe, supermassive black holes with masses a billion times larger than the Sun appear to inhabit the centres of massive galaxies. As interstellar gas is accelerated in their powerful gravitational field, it emits copious amounts of radiation, outshining the entire galaxy as “quasars”. Recent observations have revealed that the first quasars are often surrounded by bright, giant nebulae. These can span up to several 100,000 light years, about ten times larger than their host galaxy. New detailed computer simulations of galaxy evolution performed at MPA have shed new light on these puzzling observations, reproducing them in striking detail. According to these new theoretical models, the observed extended nebulae can be explained as quasar light that reflects off cool neutral hydrogen clouds surrounding the quasar host galaxy. Crucially, this mechanism only works if the energy provided by the quasar is able to produce gigantic galactic winds that blow out large masses of gas from its immediate vicinity. This finding suggests that quasars shape galaxy evolution from the earliest stages of galaxy formation. more

Do massive red elliptical galaxies line up?

Are galaxy orientations distributed randomly in the cosmos? What appears to be a simple question might not only shed light on our understanding of galaxy and cluster formation, but also further our knowledge of cosmological models. MPA scientists and collaborators attempt to settle this question through the first direct, field-based measurement of whether and how massive red elliptical galaxies align with the tidal field of large scale structure. Their result confirms predictions of the (linear) alignment model of galaxy intrinsic alignment. The newly presented method also opens up new avenues for cosmology and astrophysics. more

Eiichiro Komatsu awarded the Inoue Prize for Science

Max Planck Institute for Astrophysics Director Eiichiro Komatsu has been selected as one of the recipients of this year's Inoue Prize for Science. He is recognized for his work to study the physics of the early Universe as a researcher with remarkable achievements in the natural and fundamental sciences. more

Galaxy formation meets Reionization in the THESAN simulations

Approximately 13 billion years ago, the radiation produced by the first galaxies completely transformed the Universe. The vast amount of hydrogen filling the space between galaxies was  ionized in a process called cosmic reionization. Despite their intimate connection, the formation of the first galaxies and the reionization process are typically studied separately. An international team led by and including MPA researchers has now produced the first suite of simulations designed to simultaneously investigate these two processes during the infancy of the Universe, unveiling features of their connection. This new numerical effort – soon to be released publicly – provides a unique platform for investigating the young Universe and to fully exploit the forthcoming James Webb Space Telescope. The first results from THESAN have already shown that its unique combination of physical accuracy and simulated scales allows to reproduce most of the available data, including some that escaped previous numerical efforts. more

Show more
Go to Editor View