Cosmology News

The lingering imprint of the first cosmic structures

The universe today is host to a vast network of galaxies and an even richer array of invisible dark matter structures. But this was not always the case. The universe was nearly uniform until a time of about 100 million years, when the first cosmic structures gravitationally condensed. These objects were made of dark matter alone and each may have weighed no more than the Earth. Most of these objects do not last long: they rapidly grow and cluster together to form the much larger systems that we know today. Despite this, scientists at MPA have discovered in high-resolution simulations that some unique features of the first structures survive this process. Their lingering imprint could manifest itself in astronomical observations, yielding clues to the identity of dark matter. more

Eiichiro Komatsu receives 2022 Nishina Memorial Prize

The Nishina Memorial Foundation announced this week that Professor Eiichiro Komatsu, director at the Max Planck Institute for Astrophysics, receives the most prestigious Japanese physics award. The Nishina Memorial Prize is presented annually, honoring outstanding Japanese scientists who have made substantial contributions to physics research. Komatsu receives the prestigious award for his “contributions to the standard cosmology based on the cosmic microwave background”. The award will be presented during a ceremony in Tokyo on 6 December 2022. more

Galaxies light up hydrogen halos around neighbouring galaxies

Galaxies are embedded in large reservoirs of gas - mostly hydrogen and helium. This hydrogen gas has been found to glow faintly in a specific ultraviolet wavelength, or color, called Lyman-alpha. Scientists at the MPA have discovered that these Lyman-alpha halos are larger than previously thought, spanning several 100,000 light years. The inferred size and shape of the halos suggest that the light in the outer parts of the halos comes from surrounding galaxies or the gas in their environments rather than from the central galaxy itself. more

Relieving the Hubble tension with Early Dark Energy

Different measurements of the Hubble constant, the current expansion rate of our universe, show a discrepancy known as the Hubble tension. This could hint towards new physics beyond the standard model of cosmology. Using a complementary statistical method, researchers at MPA now narrow down possible new physics in the early universe and constrain the fraction of a proposed new component: early dark energy. more

New analysis strengthens the hint of new physics in polarized radiation from the early Universe<br /> 

In 2020, a tantalizing hint of new physics violating “parity symmetry” was found in polarization data of the cosmic microwave background obtained with the Planck satellite at high frequencies. Based on the Planck data and a simplified assumption about the impact of the polarized dust emission in the Milky Way, the scientists reported a violation of the symmetry of the laws of physics under inversion of spatial coordinates with 99.2% confidence level. An international team led by MPA director Eiichiro Komatsu has now improved the analysis method. By considering the dust emission explicitly and using more data from not only Planck but also from WMAP the astrophysicists measured the parity-violating signal with 99.987% confidence level. If this should be confirmed in the future as a genuine cosmological signal, it would have profound implications for the fundamental physics behind dark matter, dark energy, and quantum gravity. more

Show more
Go to Editor View