Current Research Highlights

Field-Level Inference: Unlocking the Full Potential of Galaxy Maps to Explore New Physics

Galaxies are not islands in the cosmos. While globally the universe expands – driven by the mysterious ‘dark energy’ – locally, galaxies cluster through gravitational interactions, forming the cosmic web held together by dark matter’s gravity. For cosmologists, galaxies are test particles to study gravity, dark matter and dark energy. For the first time, MPA researchers and alumni have now used a novel method that fully exploits all information in galaxy maps and applied it to simulated but realistic datasets. Their study demonstrates that this new method will provide a much more stringent test of the cosmological standard model, and has the potential to shed new light on gravity and the dark universe. more

Rapidly merging stars and black holes

New observations by the James Webb Space Telescope (JWST) have revealed that supermassive black holes (SMBHs) of more than one million solar masses were already present only 450 million years after the Big Bang. How did these first SMBHs form? A team of researchers at MPA has used modern supercomputer simulations to show that progenitors of SMBHs (seeds) of a few thousand solar masses can form rapidly in dense and structured star clusters forming in the early Universe. They emerge from collisions of massive stars which form supermassive stars and then collapse directly into black holes, which can further grow by merging with other black holes. This new and more realistic model resembles JWST observations and can explain the formation of SMBH seeds which are massive enough to further grow into the earliest SMBHs observed. For this SMBH seed formation process, the researchers predict a unique gravitational wave fingerprint from black hole merger that can be directly tested with the next-generation gravitational wave observatories. more

<span>How galaxies make black holes collide</span>

The groundbreaking detections of gravitational waves from merging pairs of black holes have left us with an intriguing question: how do black holes get close enough to merge? Scientists at MPA show that some of them may have started out as massive stars orbiting one another at extremely large separations — 1,000 to 10,000 times the distance between Earth and Sun. Once these stars end their lives and form black holes, the gravity of the entire galaxy in which they reside could slowly deform the shape of their orbit leading to a close encounter and merger of the black holes. more

<span>How hyper-accreting black holes shape their environment with anisotropic winds</span>

Among many X-ray sources in our Galaxy, the one called SS 433 (as an entry number 433 in the catalog of Halpha emitters by Stephenson & Sanduleak 1977) is especially famous and peculiar.  It is likely powered by a black hole in a massive binary system. The accretion rate on this black hole from its companion star is hundreds of times higher than the critical value known as the Eddington limit (when the pressure of produced radiation becomes so great that it can eject matter and form powerful “winds” of the accretion disk). The new model discusses the impact of such winds on the surrounding interstellar medium. In particular, this wind can inflate the giant W50 nebula, encompassing SS 433 and spanning tens of parsecs in size. A similar situation may occur for rapidly growing massive black holes at the dawn of the Universe, galaxies with extreme nucleus activity and star formation rates during the “Cosmic Noon” (when the Universe was about 2-3 billion years old), or in the most extreme ultraluminous X-ray sources in normal star-forming galaxies today. more

How do Lyman-alpha photons escape from Galactic Labyrinths?

With the recent advancements in the Lyman-alpha observations, it becomes more and more important to have theoretical models to help us decode the intricate Lyman-alpha spectral line. Scientists at MPA developed a theoretical approach to describe the escape of Lyman-alpha from scenarios where there is an empty hole to emulate the porous gas around galaxies. more

Explaining the density profiles of dark matter halos with neural networks

Can machine learning make new discoveries in astrophysics? An ‘explainable’ neural network is employed to get insights into the origin of dark matter halo density profiles. The network discovers that the shape of the profile in the halo outskirts is described by a single parameter related to the most recent accretion of mass. This is done without prior knowledge of the halo’s evolution history being provided during training.
  more

Understanding the cosmic web: Unveiling the evolution of cosmic filaments with the MillenniumTNG simulation

A careful analysis of the filaments in the cosmic large-scale structure has revealed interesting new findings about the evolution and complexities of the cosmic web. While some filaments show a significant evolution – depending on their cosmic environment – global filament properties are preserved, which could be used in future cosmological studies. The MPA team also developed a new method to allow for rigorous calibration of the filament catalogues.
  more

<span><span><span><span>Unveiling the Universe at the field level</span></span></span></span>

The distribution of galaxies on large, cosmological scales holds important clues on the nature of dark matter, the properties of dark energy and the origin of our Universe. Yet, optimally retrieving this information from observations is challenging. MPA researchers are developing a novel analysis approach, where they follow the evolution of cosmic structures through their entire formation history. Enabling a very detailed comparison between theoretical models and observational data, this approach will allow measuring key parameters of dark matter and dark energy very precisely. more

Probing Cold Gas with the Resonance Doublet of Singly Ionized Magnesium<br /> 

Traditional studies of the gas around galaxies rely in particular on absorption and emission features of neutral hydrogen, the simplest and most abundant element in the universe. MPA researchers have now investigated alternative tracers, in particular the resonance doublet of singly ionized magnesium and found that analyzing this emission can lead to significant advances in studying the circum-galactic medium. They showed the potential of the magnesium doublet as an alternative to Lyman-alpha emission through a new radiative transfer code and suggest that the magnesium doublet ratio could even be used as a tracer of the Lyman-continuum escape. more

A new spin on Betelgeuse’s boiling surface

Betelgeuse is a well-known red supergiant star in the constellation Orion. Recently it has gained a lot of attention, not only because variations in its brightness led  to speculations that  an explosion might be imminent, but also because observations indicated that it’s rotating much faster than expected. This latter interpretation is now put into question by an international team led by astronomers at Max Planck Institute for Astrophysics, who propose that Betelgeuse’s boiling surface can be mistaken for rotation even in the most advanced telescopes. Other astronomers are actively analyzing new observational data to test such hypotheses. more

What happens when a star approaches a black hole?

In dense stellar environments, interactions between stars and stellar-mass black holes should occur frequently. Through hydrodynamical simulations, researchers at MPA have explored how stars are disrupted in such encounters, varying key parameters such as stellar and black hole masses, stellar age, and approach distance. The study quantifies the impact of these initial parameters on stellar remnants' masses, spins, and trajectories, offering insights into cluster dynamics and providing best-fit formulae for post-disruption parameters. more

Our Neighborhood in the Milky Way in 3D

High-resolution three-dimensional maps of the Milky Way have previously been limited to the immediate vicinity of the Sun. In a collaboration led by the Max Planck Institute for Astrophysics with researchers from Harvard, the Space Telescope Science Institute, and the University of Toronto, we were now able to build a high-resolution map of the Milky Way in 3D out to more than 4,000 light-years. The produced 3D map will be highly useful for a wide range of applications from star formation to cosmological foreground correction. more

Show more
Go to Editor View