News

Magnetic fields are ubiquitous in the Universe today, from stars to clusters of galaxies. Their origin, however, remains a mystery. MPA researchers have now simulated in great detail a variety of proposed mechanisms for magnetogenesis – i.e. how magnetic fields might be created – in high-redshift galaxies. They also studied their impact on the formation and evolution of galaxies, providing guidance to both future observations and simulations. Their work demonstrates that high-redshift galaxies may hold the key to understanding the origin of cosmic magnetic fields. It also provides the first-ever investigation on galactic scales of a novel magnetogenesis mechanism. more

Intermediate mass black holes (IMBH) should be linking observed stellar black holes and supermassive black holes, but their formation mechanisms are still debated. Young and dense massive star clusters are promising environments for the formation of such black holes through collisions. An international team lead by MPA researchers has presented novel realistic simulations of star clusters, where these missing links form by rapid collisions of stars and black holes. The study also predicts an IMBH formation channel by the merging of black holes in a mass regime, which is excluded by stellar evolution models. In this “mass gap” a black hole merger has indeed been observed recently by the LIGO/Virgo gravitational wave collaboration. more

Where are the baryons? This question naturally arises as the predicted abundance of baryons in the universe - the basic building blocks of all elements in the periodic table – do not agree with observations of the intergalactic medium. Locating the missing baryons will help us to not only better understand the formation and evolution of galaxies, but also to better constrain possible extensions of the current standard model of cosmology. MPA researchers have turned to a novel approach in modelling the galaxy distribution to optimize measurements of the kinematic Sunyaev-Zel'dovich effect, an emerging tool to probe the distribution of baryons in galaxy clusters. more

How can machine learning methods help us understand our tangled cosmic web? A new study presents a ‘deep learning’ framework to shed light onto the physics of the formation of dark matter halos. The results show that spherical averages over the initial conditions of the Universe carry the most relevant information about the final mass of halos. more

Three years into its quest to reveal the nature of dark energy, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is on track to complete the largest map of the cosmos ever. The team will create a three-dimensional map of 2.5 million galaxies that will help astronomers understand how and why the expansion of the universe is speeding up over time. Scientists in Munich and Garching have contributed to the design of the survey strategy, planning and execution as well as developing key software and data management tools for the cosmology data analysis. more

Go to Editor View