Aktuelle Forschung im Bereich Kosmologie

Gas wirbelt in 4 Panels, einmal grün, einmal rot, zweimal dunkel-lila

Schwarze Löcher mit einer Masse zwischen der stellarer und supermassereicher Schwarzer Löcher gehören zu den rätselhaftesten Objekten im Universum. Es wird angenommen, dass diese Schwarzen Löcher mittlerer Masse in vielen Zwerggalaxien vorkommen. Mithilfe neuer, hochauflösender Supercomputersimulationen haben Wissenschaftler des MPA herausgefunden, dass nukleare Sternhaufen – kompakte, massereiche Sternhaufen im Zentrum von Galaxien – möglicherweise der Schlüssel zu ihrem Wachstum sind und somit das Rätsel um die Entstehung supermassereicher Schwarzer Löcher lösen könnten. mehr

Neun Aufnahmen von Galaxien mit hellen Kernen und umgebenden Gaswolken.

Quasare sind aktive, supermassereiche Schwarze Löcher im Zentrum massereicher Galaxien. Sie geben eine Energie ab, die weit über die gravitative Bindungsenergie ihrer Wirtsgalaxien hinausgeht. Diese enorme Energiemenge kann das Gas innerhalb und außerhalb der Galaxien beeinflussen und somit deren Entwicklung verändern. Die Bedeutung dieses Prozesses ist zwar weitgehend akzeptiert, doch seine Details sind nach wie vor umstritten. Ein internationales Forscherteam unter der Leitung des Max-Planck-Instituts für Astrophysik (MPA) hat nun Beobachtungen der umfangreichsten Stichprobe von Wasserstoffstrukturen um Quasare im frühen Universum gesammelt, um diesen Rückkopplungsprozess besser zu verstehen. Die Daten zeigen, wie das Gas über Entfernungen von mehreren hunderttausend Lichtjahren auf die von den supermassereichen Schwarzen Löchern abgegebene Energie reagiert. Damit bieten sie einen neuen Ansatz zur Untersuchung des Einflusses von Quasaren auf die Entwicklung von Galaxien. mehr

Schwarzes Loch mit einem Stern und rotem und orangem Gas im All.

Stellen Sie sich einen Stern vor, der nicht in einer feurigen Explosion in ein supermassereiches Schwarzes Loch stürzt, sondern es umkreist und sich seinem Horizont langsam immer weiter nähert. Dies ist die Geschichte eines Unterriesensterns, der von einem Schwarzen Loch mit einer Masse von mehreren Millionen Sonnenmassen seiner Wasserstoffschicht beraubt wird. Übrig bleibt ein Heliumkern, der aufgrund der Emission starker Gravitationswellen langsam angezogen wird. Schließlich kann er so nah an das supermassereiche Schwarze Loch herangezogen werden, dass er zu einer vielversprechenden, beobachtbaren Gravitationswellenquelle für den zukünftigen Detektor LISA (Laser Interferometer Space Antenna) wird. Ein Team am MPA hat dieses Szenario untersucht. mehr

Ein Universum aus schwarzen Löchern?

Die Natur der Dunklen Materie ist noch weitgehend unbekannt; mögliche Erklärungen reichen von mikroskopisch kleinen Elementarteilchen bis hin zu Schwarzen Löchern mit Massen, die um ein Vielfaches größer sind als die der Sonne. Forscher des MPA, der Carnegie Observatories und der University of Sussex haben kürzlich konkrete und zuverlässige Vorhersagen darüber getroffen, wie das Universum aussehen würde, wenn die Dunkle Materie ausschließlich aus massereichen Schwarzen Löchern bestehen würde: Sie führten die erste in sich schlüssige Studie darüber durch, wie sich in einem solchen Universum Strukturen bilden würden und wie viele dieser Schwarzen Löcher verschmelzen und beobachtbare Gravitationswellen aussenden würden. mehr

Neues Hochleistungsteleskop erreicht chilenischen Gipfel

Der Aufbau des Fred Young Submillimeter Teleskops beginnt an seinem Standort in der chilenischen Atacama-Wüste. Das Teleskop soll im April 2026 in Betrieb genommen werden. Es wird bis zum Urknall zurückzublicken und neue Details über die Entstehung von Sternen und Galaxien enthüllen. mehr

Ein neuer kosmischer Maßstab: Messung der Hubble-Konstante mit Typ-II-Supernovae

Die Expansionsrate des Universums, ausgedrückt durch die Hubble-Konstante (H₀), ist nach wie vor eine der meistdiskutierten Größen in der Kosmologie. Messungen, die auf nahen Objekten basieren, ergeben einen höheren Wert als solche, die aus Beobachtungen des frühen Universums abgeleitet werden - eine Diskrepanz, die als „Hubble-Spannung“ bekannt ist. Forschende des Max-Planck-Instituts für Astrophysik und ihre Kooperationspartner haben nun eine neue, unabhängige Bestimmung von H₀ anhand von Typ-II-Supernovae präsentiert. Indem sie das Licht dieser explodierenden Sterne mit fortschrittlichen Strahlungstransport-Techniken modellierten, konnten sie die Entfernungen direkt messen, ohne auf die traditionelle Entfernungsleiter zurückgreifen zu müssen. Der resultierende H₀-Wert stimmt mit anderen lokalen Messungen überein und trägt zur wachsenden Zahl von Hinweisen auf die Hubble-Spannung bei - eine wichtige Kontrolle und ein vielversprechender Weg zur Lösung dieses kosmischen Rätsels. mehr

Die Geburt, das Leben und das Verschwinden von galaktischen Sternhaufen mit Supercomputer-Simulationen

Sterne entstehen meist in Sternhaufen, eingebettet in die dichtesten und kältesten Kerne riesiger molekularer Gaswolken. Einige Millionen Jahre nach ihrer Entstehung wird das verbleibende Gas durch Supernova-Explosionen ausgestoßen. Anschließend verlieren die Haufen Sterne im galaktischen Gezeitenfeld und lösen sich schließlich auf. Dieser Lebenszyklus ist schwer zu beobachten, da Sternhaufen tief in ihren Geburtswolken verborgen sind und für viele Observatorien unsichtbar bleiben. Das Verschwinden eines Sternhaufens kann Millionen Jahre dauern. Ein internationales Team unter Leitung von Forschenden am MPA hat eine hochauflösende Supercomputer-Simulation entwickelt, die den gesamten Lebenszyklus galaktischer Sternhaufen von der Geburt bis zur Auflösung nachverfolgen kann. Diese Simulation ermöglicht die detaillierte Untersuchung der nicht beobachtbaren Phasen der Sternhaufenentwicklung.
  mehr

Mehr anzeigen
Zur Redakteursansicht