The Information Field Theory Group at the Max Planck Institute for Astrophysics has released a new version of the NIFTy software for scientific imaging. NIFTy5 generates an optimal imaging algorithm from the complex probability model of a measured signal. Such algorithms have already proven themselves in a number of astronomical applications and can now be used in other areas as well.
Each day, a large number of astronomical telescopes scan the sky at different wavelengths, from radio to optical to gamma rays. The images generated from these observations are usually the result of a complex series of calculations developed specifically for each telescope. But all these different telescopes observe the same cosmos – possibly just different facets of it. Therefore, it makes sense to standardize the imaging of all these instruments. Not only does this save a lot of work in developing different imaging algorithms, it also makes results from different telescopes easier to compare, allows measurements from different sources to be combined into one common image, and means that advances in software development will directly benefit a larger number of instruments.
The research group on information field theory at the Max Planck Institute for Astrophysics has taken a big step towards achieving this goal of a uniform imaging algorithm by developing and publishing the NIFTy5 software. The research topic of this group, information field theory, is the mathematical theory on which imaging processes are based. Information field theory uses methods from quantum field theory for the optimal reconstruction of images. The latest version, NIFTy5, now automates a large part of the necessary mathematical operations.
To begin with, the user needs to program probability models of the image signal (see Fig. 1) as well as the measurement. For this, (s)he can rely on a number of prefabricated building blocks, which often simply need to be combined or only slightly modified. These modules include models for typical signals, such as point or diffuse radiation sources, or for typical measurement situations, which may differ in terms of noise statistics or instrument response. From such a 'forward' model of the measurement, NIFTy5 creates an algorithm to 'backwards' calculate the original signal, which results in a computed image. However, since the source signal can never be determined uniquely, the algorithm also provides a quantification of the remaining uncertainties. This is implemented by providing a set of plausible images: the greater the uncertainty in a region, the greater the provided images differ there.
NIFTy5 has already been used for a number of imaging problems, the results of which are published simultaneously. These include the three-dimensional reconstruction of galactic dust clouds in the vicinity of the solar system (see Fig. 2, an animation can be found here), as well as a method to determine the dynamics of fields based only on their observation (see Fig. 3).
On the strength of past experience, NIFTy5 not only allows new, complex imaging methods to be generated much more conveniently, this software package also includes a number of algorithmic innovations. For example, the "Metric Gaussian Variational Inference" (MGVI) was developed specifically for NIFTy5, but can also be used for other machine learning methods. In contrast to conventional methods of probability theory, the implementation of this algorithm in NIFTy5 does not require the explicit storage of so-called covariance matrices. As a result, the memory requirement increases only linearly, not quadratically with problem size, so that also gigapixel images can be calculated without problems.
stands for Numerical Information Field Theory. The eponymous information field theory was originally developed for the analysis of cosmological data sets. Thanks to NIFTy5, it can now be used in other scientific and technical fields as well, such as medical imaging.
more
High-resolution three-dimensional maps of the Milky Way have previously been limited to the immediate vicinity of the Sun. In a collaboration led by the Max Planck Institute for Astrophysics with researchers from Harvard, the Space Telescope Science Institute, and the University of Toronto, we were now able to build a high-resolution map of the…
What do radiation biology, radio astronomy and cosmic ray measurements have in common? For one thing, radiation occurs in all of them. For another, all of these fields are explored using large-scale research facilities and require intelligent algorithms to visualize the quantities that occur in the process. In order to advance this imaging in an…
A universal sign of higher intelligence is communication. However, not all communications are well-intentioned. How can an intelligent system recognise the truthfulness of information and defend against attempts to deceive? How can a egoistic intelligence subvert such defences? What phenomena arise in the interplay of deception and defence? To…
Magnetic fields of spiral galaxies usually show spiral structures themselves. For our own galaxy, this could not be confirmed so far due to our unfavorable inner perspective. Researchers at the Max Planck Institute for Astrophysics have now shown that the local galactic magnetic field is indeed aligned with the local Orion spiral arm of the Milky…
In April 2017 the Event Horizon Telescope (EHT) observed the super-massive black hole M87* and provided a first image of its shadow that went around the world. Researchers at the Max Planck Institute for Astrophysics have now reconstructed a video of the immediate surroundings of a black hole from the same underlying data. This not only confirms…
Radio telescopes observe the sky in a very indirect fashion. Sky images in the radio frequency range therefore have to be computed using sophisticated algorithms. Scientists at the MPI for Astrophysics have developed a series of improvements for these algorithms, which help to improve the telescopes' resolution considerably.
Artificial intelligence expands into all areas of the daily life, including research. Neural networks learn to solve complex tasks by training them on the basis of enormous amounts of examples. Researchers at the Max Planck Institute for Astrophysics in Garching have now succeeded in combining several networks, each one specializing in a different…
At the very beginning of the Universe, not only elementary particles and radiation were generated but also magnetic fields. A team of researchers led by the Max Planck Institute for Astrophysics now calculated what these magnetic fields should look like today in the local universe – in great detail and in 3D. To achieve this, first they traced back…
The magnetic fields of the Milky Way cause electrons with nearly the speed of light to rotate and to emit radio waves. As consequence, this radiation should also "rotate" slightly, it is circularly polarized. This very weak circular polarization of the Milky Way, however, has not been observed so far. Researchers at the Max Planck Institute for…
Complex predictions such as election forecasts or the weather reports often have to be simplified before communication. But how should one best simplify these predictions without facing embarrassment? In astronomical data analysis, researchers are also confronted with the problem of simplifying probabilities. Two researchers at the Max Planck…
The Planck mission to survey the Cosmic Microwave Background (CMB) has not only advanced our understanding of the Universe, it also created advanced software systems for data analysis. Three interrelated software packages, which were developed at the Max Planck Institute for Astrophysics (MPA) specifically for the Planck mission, are now publicly…
The anatomy of the Milky Way as seen in gamma light is full of mysteries. For example, there are gigantic bubbles of unknown origin above and below the center of the Milky Way that emit a lot of this high-energy radiation. A new method for imaging, developed at the Max Planck Institute for Astrophysics, now divided the Galactic gamma-radiation into…