In the interstellar medium (ISM) of galaxies, stars form in small groups groups of a few hundred and clusters up to several million stars. A full theoretical model of this process and its impact on galaxy evolution is still in its infancy. MPA researches and their collaborators have developed a highly complex numerical model to simulate the multi-phase ISM and how star clusters emerge in dwarf galaxies. The supercomputer simulations show that the properties of the star clusters depend on how efficiently stars can form from the cold dense gas. Detailed post-processing then allowed the researchers to compare their results to observations. This demonstrates the scientific fidelity of the new model, its current limitations, and observational limitations on how well clusters can be detected in regions of high star formation activity. The studies are a major step towards a comprehensive model for star cluster formation. more

By Prof. Victoria Kaspi, McGill University in Montréal, Canada more

The colours and star formation rates of galaxies are strongly correlated with each other out to distances as large as 10 Megaparsecs. However, current galaxy formation models fail to reproduce these large-scale correlations accurately. Scientists from MPA, the University of Surrey, and Heidelberg University are in the process of updating the Munich galaxy formation model, L-GALAXIES, with a sophisticated and accurate method to model environmental effects for all galaxies. The most recent updated model is in significantly better agreement with observations than its predecessors and exhibits a stronger environmental dependency of galaxy properties out to several Megaparsecs from the centers of their dark matter haloes. more

This year’s Kippenhahn Prize goes to Francesca Rizzo for her paper on “A dynamically cold disk galaxy in the early Universe”. The Prize is awarded annually by the Max Planck Institute for Astrophysics for the best student paper that has been published in an established journal. Rizzo made most of the contribution to all aspects of the paper: code development, data analysis, and the interpretation and writing of the surprising results. more

Combining radio and X-ray images by LOFAR and SRG/eROSITA, respectively, astrophysicists have studied a group of galaxies where an incredibly rich system of radio-bright filaments are embedded in an atmosphere of hot X-ray emitting gas. These filaments were initially produced by outflows from a supermassive black hole a few hundred million years ago – roughly, when dinosaurs appeared on Earth. Despite their impressive age, the filaments still survive and form an intricate maze of threads and geometrical patterns that are reminiscent of structures formed when buoyant plumes rise in the atmosphere. The lack of full mixing between the X-ray and radio-emitting plasma is particularly interesting for physical models of the so-called mechanical AGN feedback. more

A new study led by the Max Planck Institute for Astrophysics shows that massive stars produce twice as much carbon when they have a binary partner. The scientists base this on new state-of-the-art computer simulations. Their findings are a small but important step towards better understanding the cosmic origin of the elements we are made of. more

Approximately 13 billion years ago, the radiation produced by the first galaxies completely transformed the Universe. The vast amount of hydrogen filling the space between galaxies was  ionized in a process called cosmic reionization. Despite their intimate connection, the formation of the first galaxies and the reionization process are typically studied separately. An international team led by and including MPA researchers has now produced the first suite of simulations designed to simultaneously investigate these two processes during the infancy of the Universe, unveiling features of their connection. This new numerical effort – soon to be released publicly – provides a unique platform for investigating the young Universe and to fully exploit the forthcoming James Webb Space Telescope. The first results from THESAN have already shown that its unique combination of physical accuracy and simulated scales allows to reproduce most of the available data, including some that escaped previous numerical efforts. more

Go to Editor View