Structure and Evolution of Single Stars
Stars are the major source of information about the Universe. Understanding their properties and applying our knowledge is the aim of research about stellar structure and evolution at MPA. The theory of stellar structure and evolution has a long history at MPA, starting with the pioneering work by Kippenhahn, Meyer-Hofmeister and Weigert. Their stellar evolution code has continuously been updated, reshaped and extended until the present day, still being among the top codes available. It is now well known under the name of GARSTEC. It can be used to calculate the structure and evolution of single stars of all masses throughout most of their life, but is also accurate enough for the computation of solar models and for purposes of asteroseismology. Research in our group focuses on solar models, low and intermediate mass stars, asteroseismology, convection theory, and the application to stellar populations and questions related to cosmology and basic physics. While this code is a traditional hydrostatic 1-dimensional one, we are also investigating crucial aspects of stellar structure, which require a dynamical approach, with 2- and 3-dimensional hydro-codes. Such problems include core convection in massive and developed stars, envelope convection in the Sun and red giants, nuclear flashes, and rotation in stars. The aim is to extract fundamental properties of such effects and to include them in a realistic way in the 1-d code, which is still the only way to follow a star through its complete life.