L-GALAXIES 2020: Modelling millions of galaxies across billions of years
March 01, 2020
A new model of galaxy formation will help scientists to better understand the distribution of gas and stars within galaxies. Researchers from the MPA in Garching, along with collborators from Switzerland, China, the UK, and Iceland have come together to release L-GALAXIES 2020, the latest version of the L-GALAXIES model project, a computational simulation designed to study many millions of galaxies simultaneously, each self-consistently evolved over billions of years of cosmic time.
The key power of L-GALAXIES is it's efficiency. The model runs tens of thousands of times more quickly than the latest hydrodynamical simulations, even though its size is hundreds of times larger. This comes with limitations in the way the dynamics and morphologies of galaxies can be modelled, but allows scientists to precisely pin-down the true impact and efficiency of the key astrophysical processes such as gas cooling, star formation, and supernova & black hole feedback, by using sophisticated statistical techniques to constrain their key parameters.
L-GALAXIES 2020 is the first model of its kind to simultaneously incorporate physical prescriptions for molecular hydrogen formation, chemical element production, and the flow of material within radially resolved galaxies. These enhancements have added a completely new dimension to studies that can be carried-out. For example, scientists can now use L-GALAXIES 2020 to interpret data on the internal distribution of gas and stars within real galaxies provided by integral field units (IFUs) mounted on powerful ground-based telescopes.
The ability to resolve galaxies spatially is critical for modelling the transition from atomic to molecular gas in galaxies. Molecular gas formation is believed to depend on gas density, occurring predominantly in the densest regions near the centres of galaxies. In order to follow the formation of molecular hydrogen correctly, it is therefore necessary to accurately track the surface density of cold gas.
So what has L-GALAXIES 2020 revealed?
Well, the model can simultaneously reproduce both the global properties of galaxies and their internal distribution, but only under certain conditions. Firstly, gas must flow rapidly into the centres of galaxies to replenish the fuel required for star formation, reaching speeds of around 200,000 km/h at the edges of galaxy discs. Secondly, the supernova explosions caused by this star formation must be very efficient in blowing out material in large-scale winds reaching nearly 800,000 km/h. Thirdly, nearly all the newly-formed chemical elements forged in the hearts of stars and their supernovae must be blown out in these winds, before raining back down onto galaxies later on.
This last constraint is crucial to match the observed decrease in chemical abundance (often called 'metallicity') with radius seen in nearby galaxies (see Fig. 3). If too little material is blown out of the centres of galaxies by supernovae, then the metallicity, gas density, and star-formation rate can become too high.
The total amount of ionised hydrogen (the most common baryonic matter in the Universe) found in galaxies is also well reproduced by this model; and this is true for galaxies ranging from tens of millions of stars to those containing hundreds of billions. This represents a significant success, since it has been particularly challenging for models to match both the stellar and ionised-hydrogen masses in galaxies in the nearby Universe.
What is the next step for L-GALAXIES 2020?
Scientists at the MPA are already working on further improvements to the model, including the incorporation of gas stripping in galaxies due to ram-pressure effects as they travel through deep space, and improvements to the modelling of the all-important gas flows within galaxies. The model is now also being used to study the higher-redshift Universe, to decipher how the metallicity gradients formed in the earliest and most distant galaxies evolved over time to become what we see today. So stay tuned for more exciting discoveries soon!
The output data from L-GALAXIES 2020 is now also available online to download via the Millennium Database (log-in required). This online database represents a tremendous resource for other scientists across the world to study model galaxies as they evolve over billions of years of cosmic time, and compare their properties with galaxies in our own Universe.
Galaxies are not islands in the cosmos. While globally the universe expands – driven by the mysterious ‘dark energy’ – locally, galaxies cluster through gravitational interactions, forming the cosmic web held together by dark matter’s gravity. For cosmologists, galaxies are test particles to study gravity, dark matter and dark energy. For the first…
Can machine learning make new discoveries in astrophysics? An ‘explainable’ neural network is employed to get insights into the origin of dark matter halo density profiles. The network discovers that the shape of the profile in the halo outskirts is described by a single parameter related to the most recent accretion of mass. This is done without…
A careful analysis of the filaments in the cosmic large-scale structure has revealed interesting new findings about the evolution and complexities of the cosmic web. While some filaments show a significant evolution – depending on their cosmic environment – global filament properties are preserved, which could be used in future cosmological…
The distribution of galaxies on large, cosmological scales holds important clues on the nature of dark matter, the properties of dark energy and the origin of our Universe. Yet, optimally retrieving this information from observations is challenging. MPA researchers are developing a novel analysis approach, where they follow the evolution of cosmic…
MPA postdoc Maria Werhahn has been awarded the Carl Ramsauer Prize by the Physikalische Gesellschaft zu Berlin for her doctoral thesis “Simulating Galaxy Evolution with Cosmic Rays: The Multi-Frequency View”. The award ceremony took place on 22 November 2023 at the Technical University of Berlin, where she also presented her work in a short…
At its 2023 Annual Meeting, the German Astronomical Society elected Volker Springel, Director at the Max Planck Institute for Astrophysics as Vice President.
The first billion years saw the transformation of a cold neutral Universe to a hot and ionised one. This Epoch of Reionisation is thought to come about from stellar radiation from the first galaxies. Understanding the nature of the galaxies that drove reionisation remains a key question. Scientists at MPA have designed a novel suite of simulations…
While concerned with massive objects such as neutron stars and black holes in her work, Martyna Chruslinska loves the lightweight feeling of figure skating in her spare time.
Dark matter, which makes up over 80% of the mass in the Universe, does not absorb or emit light, interacting with light and normal (baryonic) matter only through its gravitational pull. The nature of dark matter is one of the major open questions in astrophysics and cosmology. One theoretical model for dark matter, known as fuzzy dark matter (FDM)…
The universe today is host to a vast network of galaxies and an even richer array of invisible dark matter structures. But this was not always the case. The universe was nearly uniform until a time of about 100 million years, when the first cosmic structures gravitationally condensed. These objects were made of dark matter alone and each may have…
Einstein’s General Theory of Relativity predicts that large concentrations of mass – such as galaxies – will bend light rays passing nearby, a phenomenon known as gravitational lensing. When a distant galaxy (the lens) lies exactly between us and an even more distant object (the source), the source is distorted and magnified into several images…