News

Simulating the birth, life and dispersal of galactic star clusters

Most stars form in clusters, deeply embedded in the densest and coldest cores of giant molecular gas clouds. A few million years into the formation of a cluster the remaining gas is finally expelled by supernova explosions. Thereafter the clusters lose stars in the galactic tidal field and eventually disrupt. This entire life-cycle is very difficult to observe. Star clusters begin their lives deeply embedded in their birth clouds and are invisible to most observatories and the disruption of a single cluster can take tens of millions of years or more. An international team led by researchers at MPA has presented a new high-resolution supercomputer simulation, which can follow entire galactic star cluster life-cycles from birth to disruption and sheds light on the unobservable phases of star cluster evolution. more

Debugging Galaxy Evolution with L-GALAXIES

The formation and evolution of galaxies are among the most complex challenges in astrophysics. Recent advancements with instruments like JWST and ALMA have shed light on high-redshift galaxies – those that existed billions of years ago. However, most theoretical models are tuned to match galaxies in the local universe. Researchers from the Max Planck Institute for Astrophysics and the University of Bonn now comprehensively evaluated the Munich semi-analytical model L-GALAXIES using the latest observations and found that while the model aligns well with the properties of local galaxies, it struggles with key aspects of high-redshift galaxies. Particularly, the study highlights critical issues with the model’s predictions of quenched galaxies, those that have ceased star formation. Their results suggest a need to revise the implementation of processes driving star formation quenching, including supermassive black hole feedback and galaxy mergers.
  more

Direct Imaging of Gas Recycling around a Massive Galaxy in the Early Universe

Galaxies are the birthplace of most stars and black holes. However, scientists are still debating, how galaxies accrete the fuel to sustain their growth, and how they in turn pollute their environment with elements heavier than helium. An international team of astrophysicists has now directly observed the neighborhood of a massive galaxy in the early universe. They find that the gas all around the galaxy is enriched with heavy elements, which means it has been polluted by the galaxy itself and by embedded satellite galaxies. Furthermore, this gas is spiraling onto the massive galaxy, fueling further star formation. more

Astronomers witness a monstrous galaxy consuming its neighbour

Observing a supermassive black hole in the distant Universe, MPA astronomers have discovered that it is in the process of stripping gas from a neighbouring galaxy. The gas is being very quickly turned into stars in the black hole’s host galaxy and is allowing the black hole to grow very quickly. This agrees with theoretical predictions that massive galaxies and black holes form with help from mergers with smaller galaxies and bursts of star formation. more

Cool circumgalactic gas in galaxy clusters

Galaxy clusters are our universe's largest gravitationally bound systems, extending out to several million light-years and hosting up to 1000 galaxies. The matter permeating the clusters is known as the “intracluster medium” (ICM), a very hot and ionized gas (T~ 10-100 million K) emitting bright X-rays due to thermal bremsstrahlung. Scientists from MPA and the University of Heidelberg have discovered that the ICM also contains a significant amount of cool gas (10,000 K) up to large distances. The statistical connection between the haloes of cluster galaxies and absorption features points toward a complex origin of this cool gas where clouds are either associated with satellite galaxies or were previously stripped from their haloes. more

Show more
Go to Editor View