The deficiency of star formation in dwarf galaxies
June 01, 2016
Dwarf galaxies form stars very inefficiently compared to spiral galaxies like our Milky-Way. To investigate the origin of this deficiency in star formation, scientists at MPA have used high-resolution numerical simulations to resolve the evolution of the interstellar medium (ISM) in dwarf galaxies. They find that supernova explosions have a significant impact on the structure of the ISM and regulate the star formation rates of the whole galaxy. The reservoir for star formation on scales comparable to molecular clouds in our Milky Way consists mainly of cold atomic hydrogen rather than molecular hydrogen. These findings might also shed light into the birth processes of most other galaxies. Within the current paradigm of hierarchical structure formation, low mass, chemically un-evolved dwarf galaxies are the building blocks of all, more massive galaxies.
In typical spiral galaxies, observations have shown a correlation between the surface density of the local star formation rate and the gas surface density, the so-called Kennicutt-Schmidt relation. The correlation is almost linear, i.e. the gas is converted into stars on a constant timescale of ~2 billion years. In the Milky-Way and other spiral galaxies star formation appears to happen exclusively in regions dominated by molecular gas.
However, this linear correlation breaks down in dwarf galaxies, where stars form very inefficiently on timescales that are much longer: 10-100 billion years. It is not yet clear whether the star forming gas in these dwarf galaxies consists mainly of molecules or atoms. Observations have not yet detected molecular gas but it has been speculated that an unseen molecular reservoir could dictate the star formation rate. This would provide an explanation for the longer star formation timescales in dwarf galaxies, which could be regulated by an inefficient transition from the atomic to molecular state.
Recently, scientists at MPA have investigated the star formation in dwarf galaxies using numerical hydro-dynamical simulations, which incorporate a wealth of relevant physical processes. In particular it is assumed that molecular hydrogen forms on dust grains and that interstellar UV starlight can destroy the molecules. The simulations were conducted at an unprecedented high resolution (with a spatial resolution of 2 Parsec and matter particles of 4 solar masses). The impact of individual supernova explosions is numerically resolved. Fig. 1 shows a snapshot of the gas surface density in one of the simulations at different spatial scales, demonstrating the complexity of the multi-phase gas structure.
The simulations suggest that the star formation reservoir (the cold and dense gas) is predominately in the atomic phase, contrary to the situation in spiral galaxies. This is because it takes much longer for molecular hydrogen to form in a low-metallicity environment. As the ISM is constantly shaken and stirred by supernova explosions, the molecular hydrogen has no time to reach its (chemical) equilibrium abundance. The supernova explosions inject energy and momentum into the gas, triggering turbulence and shocks, much faster than the gas can cool or heat through radiative processes. As such, the gas is also driven out of thermal equilibrium (Fig. 2).
Comparing the Kennicutt-Schmidt relation of these simulations with observations of dwarf galaxies one finds good agreement (Fig. 3). The longer timescales compared to spiral galaxies (which is about 2 billion years) is caused by the inability of gas to cool in the outer part of the galaxy. As explained above, this prevents the ISM to form the cold gas needed for effective star formation.
The simulations also demonstrate that, while a change in the dust abundance or the interstellar UV radiation has a dramatic impact on the molecular abundance, it does not affect the thermal gas properties. This suggests that molecular hydrogen plays little role in regulating star formation in dwarf galaxies and is not a good tracer for it – in contrast to spiral galaxies like the Milky Way.
Chia-Yu Hu & Thorsten Naab (Stefanie Walch, Simon Glover, Paul Clark)
Galaxies are the birthplace of most stars and black holes. However, scientists are still debating, how galaxies accrete the fuel to sustain their growth, and how they in turn pollute their environment with elements heavier than helium. An international team of astrophysicists has now directly observed the neighborhood of a massive galaxy in the…
Observing a supermassive black hole in the distant Universe, MPA astronomers have discovered that it is in the process of stripping gas from a neighbouring galaxy. The gas is being very quickly turned into stars in the black hole’s host galaxy and is allowing the black hole to grow very quickly. This agrees with theoretical predictions that massive…
Galaxy clusters are our universe's largest gravitationally bound systems, extending out to several million light-years and hosting up to 1000 galaxies. The matter permeating the clusters is known as the “intracluster medium” (ICM), a very hot and ionized gas (T~ 10-100 million K) emitting bright X-rays due to thermal bremsstrahlung. Scientists from…
Galaxies are embedded in large reservoirs of gas - mostly hydrogen and helium. This hydrogen gas has been found to glow faintly in a specific ultraviolet wavelength, or color, called Lyman-alpha. Scientists at the MPA have discovered that these Lyman-alpha halos are larger than previously thought, spanning several 100,000 light years. The inferred…
A new study of galaxies with data from the MaNGA survey shows that the initial mass function of stars, i.e. the mass distribution when they initially form, might not be as universal as widely assumed. The MPA study found an excess of very massive stars in some galaxies. An excess of radio sources in the sample might be an intriguing hint that a…
In the interstellar medium (ISM) of galaxies, stars form in small groups groups of a few hundred and clusters up to several million stars. A full theoretical model of this process and its impact on galaxy evolution is still in its infancy. MPA researches and their collaborators have developed a highly complex numerical model to simulate the…
The colours and star formation rates of galaxies are strongly correlated with each other out to distances as large as 10 Megaparsecs. However, current galaxy formation models fail to reproduce these large-scale correlations accurately. Scientists from MPA, the University of Surrey, and Heidelberg University are in the process of updating the Munich…
The gas in and around galaxies can be probed with absorption line studies using light from background quasars. Scientists at MPA have now used a large sample from the SDSS DR16 to automatically detect absorbers in background quasars and connect them with foreground galaxies. Their analysis shows that cool circumgalactic gas has a different physical…
Astronomers at the Max Planck Institute for Astrophysics, using the Atacama Large Millimeter/submillimeter Array (ALMA), have revealed an extremely distant and therefore very young galaxy that looks surprisingly like our Milky Way. The galaxy is so far away its light has taken more than 12 billion years to reach us: we see it as it was when the…
About 10 billion years ago, a galaxy smashed into our cosmic home, the Milky Way, in a violent “merger” event that changed the way the Galaxy looks. Researchers from MPA together with international collaborators from the UK, Chile and Italy, have managed to piece together the impact of this event using the largest and most sophisticated simulations…
By examining the Auriga suite, a large sample of simulated Milky Way galaxies formed in the full cosmological context, scientists at MPA have been able to place constraints on the history of the Milky Way's formation. By comparing these simulations to observations of the Milky Way — and specifically to how fast stars of different metallicities in…
Globular clusters are the densest gravitationally bound stellar systems in the Universe. They are found in all galaxy types, even low mass dwarf galaxies and they can be almost as old as the Universe. The formation mechanisms of these enigmatic systems are not yet understood. Scientist at MPA and the University of Helsinki, together with…