A novel 3D technique to study the kinematics of lensed galaxies
August 01, 2018
Gravitational lensing offers the possibility to study faint, far-away galaxies. MPA researchers have now developed the first three dimensional lens modelling method, which allows not only the reconstruction of the mass distribution of the foreground galaxy but also the kinematics of the background galaxy. Consequently, the matter content can now be studied also in young galaxies.
In the standard model of cosmology, galaxies form as the baryonic gas cools at the centre of dark matter halos. They subsequently grow through accretion and mergers, leading to the hierarchical build-up of galaxy mass. While this general picture is well known, there are numerous physical mechanisms determining the relative contribution of baryons and dark matter within a galaxy and several open questions remain: What are the most important physical mechanisms that lead to the variety of galaxies we observe today? How do these mechanisms influence the matter content within galaxies? The answer to these questions is one of the significant challenges of modern astrophysics.
The study of galaxy kinematics has played a key role in this context. For example, in the local universe, the flatness of observed rotation curves is a well-established fact. The outer parts of the observed rotation curves cannot be explained by the mass predicted from the observed stellar and gas distribution and this discrepancy has been interpreted as evidence for the presence of a "dark matter" halo. Within high redshift galaxies, however, the relative content of baryons and dark matter is poorly known and also its evolution with cosmic time is not well understood. Neither current numerical simulations nor observational studies were able to produce consistent results on the fraction of dark matter within young galaxies.
The diverging results on the kinematics of high-redshift galaxies - and in consequence on their matter content - can be ascribed to the different methods used to overcome the observational limitations. The study of kinematics is mainly hampered by two factors: low spatial resolution and low signal-to-noise ratio.
These observational limitations can be successfully overcome by targeting galaxies for which the line of sight lies very close to a foreground galaxy. The gravitational field of the foreground galaxy then deflects the light from the distant background galaxy, producing distorted, magnified, and even multiple images of the background object. This effect is known as strong gravitational lensing and it offers the opportunity to study the background galaxies at high physical resolution and with good signal-to-noise. Furthermore, the magnifying power of gravitational lensing opens the possibility to study faint galaxies with low stellar masses, which are not easily accessible by surveys targeting unlensed galaxies.
The gravitational lensing group at MPA developed the first three dimensional lens modelling method (see Figure 1). This can be applied to 3D (IFU or radio) data, characterized by two spatial dimensions and one spectral dimension (velocity, frequency or wavelength), to simultaneously reconstruct both the mass distribution of the foreground galaxy and the kinematics of the background galaxy (see Figure 2).
Our method represents a significant improvement over those used until now, since it does not require the use of high-resolution imaging data for the derivation of the lens parameters, as these are derived from the same 3D data used for the kinematics of the background galaxy. Moreover, the latter is not obtained by fitting on the source plane, but directly the lensed data. This is achieved in a hierarchical Bayesian fashion, where the kinematics on the source plane is essentially a hyper-parameter of the model (i.e. a parameter defining the prior). We are thus able to study the possible degeneracies between the lens and kinematic parameters and estimate the uncertainties consistently.
With our technique we are able to recover both the lens and the kinematics parameters with great accuracy under different observational conditions. Furthermore, we have successfully tested the capability of this new method in recovering a variety of rotation curves with shapes which are prototypes of different morphological galaxy types, from dwarf to massive spiral galaxies (see Figure 3).
Dark matter, which makes up over 80% of the mass in the Universe, does not absorb or emit light, interacting with light and normal (baryonic) matter only through its gravitational pull. The nature of dark matter is one of the major open questions in astrophysics and cosmology. One theoretical model for dark matter, known as fuzzy dark matter (FDM)…
Observing a supermassive black hole in the distant Universe, MPA astronomers have discovered that it is in the process of stripping gas from a neighbouring galaxy. The gas is being very quickly turned into stars in the black hole’s host galaxy and is allowing the black hole to grow very quickly. This agrees with theoretical predictions that massive…
Einstein’s General Theory of Relativity predicts that large concentrations of mass – such as galaxies – will bend light rays passing nearby, a phenomenon known as gravitational lensing. When a distant galaxy (the lens) lies exactly between us and an even more distant object (the source), the source is distorted and magnified into several images…
The Max Planck Society has appointed Simona Vegetti at MPA to head a Lise Meitner Excellence Group. Simona Vegetti will use strong gravitational lensing observations to measure the abundance and structural properties of dark matter haloes and thereby provide clean observational constraints on the nature of dark matter. As part of the programme, the…
Astronomers at the Max Planck Institute for Astrophysics, using the Atacama Large Millimeter/submillimeter Array (ALMA), have revealed an extremely distant and therefore very young galaxy that looks surprisingly like our Milky Way. The galaxy is so far away its light has taken more than 12 billion years to reach us: we see it as it was when the…
Warm, cold, just right? The analysis of seven strongly gravitationally lensed quasars gives new clues about the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe. The results put a lower limit on the mass of a potential dark matter particle while not ruling out cold dark matter.
Strong gravitational lensing is an extremely powerful tool to go beyond the current limits in angular resolution and to investigate the high-redshift, i.e. distant Universe. Scientists at MPA take advantage of this phenomenon to perform a detailed study of 17 Lyman-α-galaxies and present an analysis of the sizes and star formation rates of their…