All News

Bridging the Gap: From Massive Stars to Supernovae in 3D

November 01, 2017
A team of astrophysicists from Queen’s University Belfast, the Max Planck Institute for Astrophysics (MPA), and Monash University (Australia) has, for the first time, performed three-dimensional computer simulations that follow the evolution of a massive star from its final phase of nuclear burning, through the collapse of the stellar iron core, into the first seconds of the beginning explosion as a supernova. The simulations show that the large-scale violent convective motions that stir the oxygen burning layer at the onset of collapse can provide crucial support for the explosion of the star. [more]
Teaser image vertical 1509341674

Obituary

October 30, 2017
Dr. Eleonore Trefftz, Emeritus Scientific Member of the Max Planck Institute for Astrophysics, Garching, passed away on 22 October 2017 at the age of 97. With Eleonore Trefftz, the Max Planck Society loses a remarkable researcher and person. [more]
Teaser image horizontal 1509632993

Kippenhahn Award for two junior MPA scientists

October 24, 2017
Two junior MPA scientists receive the Kippenhahn Award for the best MPA student publication in 2016. Titouan Lazeyras receives the prize for his paper "Large-scale assembly bias of dark matter halos" which presents high-precision measurements of halo assembly bias. Dijana Vrbanec was awarded for her paper "Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru"; finding that a clear anti-correlation should be seen on scales larger than the typical separation distance between galaxy clusters. [more]
Teaser 1508162600

Gravitational waves and emitted light reveal merger of two neutron stars – and a kilonova

October 16, 2017
On 17 August 2017, two merging neutron stars were seen for the first time by their gravitational wave signal as well as high-energy gamma radiation. This simultaneous observation confirms that merging neutron stars are indeed the progenitors of short Gamma-Ray Bursts. Follow-up observations revealed light emission powered by the radioactive decay of heavy elements – a so-called kilonova, confirming theoretical predictions, also by scientists at the Max Planck Institute for Astrophysics, that these kinds of stellar collisions can be the cosmic origin of heavy elements such as gold and platinum. [more]
Teaser image vertical 1507103893

Volker Springel appointed as new director at MPA

October 05, 2017
From 1st October 2017, Volker Springel is a new director at the Max Planck Institute for Astrophysics and head of the "Numerical Astrophysics" department, initially with a partial appointment and from 1st August 2018 full-time. The theoretical astrophysicist, whose main research focus is on structure formation in the Universe and the simulation of galaxies, returns to Garching and the institute where his scientific career began. [more]
Teaser image vertical 1506430534

Rise and Shine: Type Ia supernova models at early times

October 01, 2017
Type Ia supernovae (SNe Ia) are spectacular explosions in white dwarf stars and play an essential role in astrophysics in general and in cosmological studies in particular. However, many puzzles about the nature and the inherent physical mechanisms in SNe Ia are still waiting to be answered. Robotic surveys of the next decade will provide an unprecedented wealth of observed Type Ia supernovae, detected shortly after explosion. Researchers at MPA examine here whether different explosion models are expected to leave clear imprints in such early observations that could be used in future photometric surveys to help shedding light on the progenitors and explosion mechanism of SNe Ia. [more]
Teaser image horizontal 1506081651

Progenitor for Tycho’s supernova was not hot and luminous

September 25, 2017
An international team of scientists from the Monash University (Melbourne, Australia), the Towson and Pittsburgh Universities (USA) and the Max Planck Institute for Astrophysics, has shed new light on the origins of the famous Tycho’s supernova. The research, published in Nature Astronomy, debunks the common view that Tycho’s supernova originated from a white dwarf, which had been slowly accreting matter from its companion in a binary system. [more]