Dr. Hannelore Hämmerle
Press Officer
Phone:+49 89 30000-3980

All News

Teaser 1505825148

ERC starting grant for Simona Vegetti

September 18, 2017
Using strong gravitational lensing, Simona Vegetti aims to constrain the properties of dark matter and investigate the formation of structure in the universe. Recently, she has been selected as recipient of an ERC starting grant, which will allow her to expand her group and refine her unique modelling technique as well as applying this to new, high-quality data. [more]
Teaser image horizontal 1504521146

Biermann Lectures 2017: Neutron star mergers and gravitational waves

September 04, 2017
Gravitational waves have become a very hot topic in astrophysics since their detection by LIGO in 2015. This means that also possible precursors are in the focus of research – general relativistic research because these objects are either black holes or neutron stars. The 2017 Biermann Lecturer, Masaru Shibata from the Kyoto University, uses numerical simulations and general relativity (or numerical relativity for short) to study the merger of such extreme objects and the properties of both the electromagnetic radiation and gravitational waves emitted during these events. [more]
Teaser 1503316854

Probing molecular clouds with supermassive black hole X-ray flares

September 01, 2017
The centre of the Milky Way is a very special place, harboring many exotic objects, such as the supermassive black hole Sagittarius A* and giant molecular clouds. Some of these clouds, despite being cold, are sources of high energy photons. It is believed that the clouds are not producing these photons themselves, but rather scatter the X-ray radiation coming from outside.  Even though Sgr A* is currently very faint in X-rays, it is considered as the main culprit of this radiation, in the form of short but intense flares, which happened over the past few hundred years. The time delay caused by light propagation from Sgr A* to the clouds and then to us, allows one to study Sgr A*’s past activity. At the same time, flares serve as an extremely powerful probe of molecular gas properties. In particular, the full 3D structure of molecular clouds and their density distribution on small scales can be reconstructed. [more]
Teaser 1500988871

Instabilities in relativistic magnetized accretion disks

August 01, 2017
Using three-dimensional general relativistic magnetohydrodynamic simulations, scientists at the Max Planck Institute for Astrophysics (MPA) have studied thick accretion disks orbiting around black holes. They find that weak magnetic fields can suppress the development of large-scale over-densities in the accretion flow. The onset of magnetic turbulence reshapes the disk's structure and could even quench the gravitational-wave signal produced by the accreting torus without magnetic fields. [more]
Teaser image 1501072593

Belopolsky Prize in astrophysics for Eugene Churazov and Marat Gilfanov.

July 26, 2017
The Russian Academy of Sciences awarded the 2017 Belopolsky Prize in Astrophysics to Eugene Churazov and Marat Gilfanov for their work on«X-ray diagnostics of accretion flow in the vicinity of black holes and neutron stars in the Milky Way and external galaxies». [more]
Teaser image horizontal 1498201849

Wanted: the rotating radio emission of the Milky Way

July 01, 2017
The magnetic fields of the Milky Way cause electrons with nearly the speed of light to rotate and to emit radio waves. As consequence, this radiation should also "rotate" slightly, it is circularly polarized. This very weak circular polarization of the Milky Way, however, has not been observed so far. Researchers at the Max Planck Institute for Astrophysics and colleagues have now predicted some properties of this polarization and created a "wanted poster" to allow targeted searches. A measurement of the circular polarization would provide important insights into the structure of the galactic magnetic fields and confirm that electrons - and not positrons - are the source of this radio emission in the Milky Way. [more]
Slider image 1496841584

Radioactive elements in Cassiopeia A suggest a neutrino-driven explosion

June 21, 2017
Stars exploding as supernovae are the main sources of heavy chemical elements in the Universe. In particular, radioactive atomic nuclei are synthesized in the hot, innermost regions during the explosion and can thus serve as probes of the unobservable physical processes that initiate the blast. Using elaborate computer simulations, a team of researchers from the Max Planck Institute for Astrophysics (MPA) and RIKEN in Japan were able to explain the recently measured spatial distributions of radioactive titanium and nickel in Cassiopeia A, a roughly 340 year old gaseous remnant of a nearby supernova. The computer models yield strong support for the theoretical idea that such stellar death events can be initiated and powered by neutrinos escaping from the neutron star left behind at the origin of the explosion. [more]
loading content