COSMOLOGICAL SIMULATIONS OF STRUCTURE FORMATION WITH FUZZY DARK MATTER

Simon May simon.may@mpa-garching.mpg.de

Max-Planck-Institut für Astrophysik

21st September 2020

Outline

Introduction

- Motivation and theoretical background
- The fuzzy dark matter equations
- Impact of fuzzy dark matter on structure formation
 - #1: Initial conditions
 - #2: Dynamics/structure
 - #3: Dynamics/objects

Numerical methods and challenges

- Solution methods for the fuzzy dark matter equations
- Computational cost
- Resolution effects

Simulations and results

- Dark matter power spectrum
- Halo mass function
- Dark matter halo profiles

Summary

What is "fuzzy dark matter"?

 \triangleright F(C)DM, BECDM, ULDM, ELBDM, ψ DM, guantum-wave DM, (ultra-light) axion(-like) DM (ULA, ALP)... New extremely light scalar particle ($m \approx 10^{-22} \, \text{eV!}$) electron: 511 keV Non-thermal production mechanism (thus not ultra-hot) Aggregations of bosons can form a Bose–Einstein condensate Tiny mass \Rightarrow large de Broglie wavelength ($\lambda \sim 1/m$) macroscopic quantum effects on kpc scales Structures resist collapse below quantum wavelength (Heisenberg uncertainty principle) Large scales: equivalent to cold dark matter

Motivation for fuzzy dark matter

Particle physics perspective:

- Original concept strong CP problem: Why doesn't QCD violate CP symmetry?
- Solved by Peccei–Quinn U(1) symmetry and (pseudo-)scalar field (axion!) Peccei and Quinn (1977)!
- Fuzzy dark matter is **not** the QCD axion, but axion-like particles are a common feature of early-universe theories

Astrophysics perspective:

- Small-scale challenges (cusp-core, missing satellites, ...)
- $\rightarrow\,$ Ultra-light scalars: WIMP alternative, could improve this

Motivation for fuzzy dark matter

Particle physics perspective:

- Original concept strong CP problem: Why doesn't QCD violate CP symmetry?
- Solved by Peccei–Quinn U(1) symmetry and (pseudo-)scalar field (axion!) Peccei and Quinn (1977)!

Fuzzy dark matter is **not** the QCD axion, but axion-like particles are a common feature of early-universe theories

Astrophysics perspective:

- Small-scale challenges (cusp–core, missing satellites, …)
- ightarrow Ultra-light scalars: WIMP alternative, could improve this

wrong LSS
$$\leftarrow | \qquad | \qquad | \qquad | \qquad \rightarrow CDM$$
-like
10⁻²³ eV 10⁻²² eV 10⁻²¹ eV
No sign of (WIMP) CDM

Derivation of the fuzzy dark matter equations Schrödinger-Poisson system

Add a scalar field to the Einstein–Hilbert action of general relativity

$$S = \frac{1}{\hbar c^2} \int \mathrm{d}^4 x \sqrt{-g} \Biggl(\frac{1}{2} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi) - \frac{1}{2} \frac{m^2 c^2}{\hbar^2} \phi^2 - \frac{\lambda}{\hbar^2 c^2} \phi^4 \Biggr)$$

Superfluid DM without self-interaction (λ = 0 or T → 0)
OCD axion case: originates from periodic potential V(φ) ~ Λ⁴(1 − cos(φ/f_a)) for φ ≪ f_a

Rewrite

$$\phi = \sqrt{\frac{\hbar^3 c}{2m}} \frac{1}{2} \operatorname{Re}(\psi e^{-ic^2/\hbar mt}) = \sqrt{\frac{\hbar^3 c}{2m}} (\psi e^{-ic^2/\hbar mt} + \psi^* e^{ic^2/\hbar mt})$$

and take non-relativistic limit with perturbed FRW metric $ds^2 = (1 + \frac{2\Phi}{c^2})c^2dt^2 - a(t)^2(1 - \frac{2\Phi}{c^2})d\vec{x}^2$ Result: Schrödinger equation

$$i\hbar \Bigl(\partial_t \psi + \frac{3}{2} H \psi \Bigr) = -\frac{\hbar^2}{2m} \nabla^2 \psi + m \Phi \psi$$

Simon May

Derivation of the fuzzy dark matter equations Schrödinger-Poisson system

Add a scalar field to the Einstein–Hilbert action of general relativity

$$S = \frac{1}{\hbar c^2} \int \mathrm{d}^4 x \sqrt{-g} \Biggl(\frac{1}{2} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi) - \frac{1}{2} \frac{m^2 c^2}{\hbar^2} \phi^2 - \frac{\lambda}{\hbar^2 c^2} \phi^4 \Biggr)$$

Superfluid DM without self-interaction (λ = 0 or T → 0)
OCD axion case: originates from periodic potential V(φ) ~ Λ⁴(1 − cos(φ/f_a)) for φ ≪ f_a

Rewrite

$$\phi = \sqrt{\frac{\hbar^3 c}{2m}} \frac{1}{2} \operatorname{Re}(\psi e^{-ic^2/\hbar mt}) = \sqrt{\frac{\hbar^3 c}{2m}} (\psi e^{-ic^2/\hbar mt} + \psi^* e^{ic^2/\hbar mt})$$

and take non-relativistic limit with perturbed FRW metric $ds^2 = (1 + \frac{2\Phi}{c^2})c^2dt^2 - a(t)^2(1 - \frac{2\Phi}{c^2})d\vec{x}^2$ Result: Schrödinger equation

$$i\hbar \Bigl(\partial_t \psi + \frac{3}{2} H \psi \Bigr) = -\frac{\hbar^2}{2m} \nabla^2 \psi + m \Phi \psi$$

Simon May

The fuzzy dark matter equations Schrödinger–Poisson system

Schrödinger equation:

$$i\hbar \Big(\partial_t \psi + \frac{3}{2} H \psi \Big) = -\frac{\hbar^2}{2m} \nabla^2 \psi + m \Phi \psi$$

- Mean field approximation: interpretation as single macroscopic wave function of Bose-Einstein condensate with density ρ = m|ψ|²
- "FDM equations" are the nonlinear Schrödinger–Poisson system of equations:

$$\begin{split} i\hbar\partial_t\psi_{\rm c} &= -\frac{\hbar^2}{2ma^2}\nabla_{\rm c}^2\psi_{\rm c} + \frac{m}{a}\Phi_{\rm c}\psi_{\rm c}\\ \nabla_{\rm c}^2\Phi_{\rm c} &= 4\pi Gm(|\psi_{\rm c}|^2 - \langle|\psi_{\rm c}|^2\rangle) \end{split}$$

Only a single scale, determined by $\frac{\hbar}{m}$ (\rightarrow wavelength)

Impact of fuzzy dark matter – #1: Initial conditions

Impact of fuzzy dark matter – #2: Dynamics/structure

Simon May

Impact of fuzzy dark matter – #2: Dynamics/structure

Quantum fluctuations, interference patterns

Small-scale (sub-)structure suppressed

BECDM interference 0.5 Mpc

Mocz, Fialkov, et al. (2020)

Impact of fuzzy dark matter – #2: Dynamics/objects (solitons)

Ground state of FDM equations: **soliton** (spherical "**core**") Soliton(-like) cores form at the center of all virialized halos Fluctuations around & within soliton cores \Rightarrow dynamical heating (e.g. of stars)

 \blacktriangleright $M_{\rm c} \sim \frac{1}{m^2 r_{\rm c}} \Rightarrow$ cores are smaller for larger core or particle mass

Impact of fuzzy dark matter – #2: Dynamics/objects (solitons)

Mocz, Vogelsberger, et al. (2017)

Simon May

Numerical approaches to fuzzy dark matter simulations

I. Schrödinger–Poisson equations

$$\begin{split} i\hbar\partial_t\psi &= -\frac{\hbar^2}{2ma^2}\nabla^2\psi + \frac{m}{a}\Phi\psi\\ \nabla^2\Phi &= 4\pi Gm(|\psi|^2 - \langle|\psi|^2\rangle) \end{split}$$

II. Madelung formulation (fluid dynamics representation)

Phase is undefined for ρ = 0 ⇒ significant effects on overall evolution Numerical approaches to fuzzy dark matter simulations

I. Schrödinger–Poisson equations

$$\begin{split} i\hbar\partial_t\psi &= -\frac{\hbar^2}{2ma^2}\nabla^2\psi + \frac{m}{a}\Phi\psi\\ \nabla^2\Phi &= 4\pi Gm(|\psi|^2-\langle|\psi|^2\rangle) \end{split}$$

II. Madelung formulation (fluid dynamics representation)

Schrödinger-Poisson vs. Madelung formulation

Li, Hui, and Bryan (2018)

Schrödinger-Poisson vs. Madelung formulation

Using pseudo-spectral methods to simulate fuzzy dark matter $i\hbar\partial_t\psi=-\frac{\hbar^2}{2ma^2}\nabla^2\psi+\frac{m}{a}\Phi\psi$

- Symmetrized split-step Fourier method ("kick-drift-kick")
- Algorithm:

$$\begin{array}{l} \psi \leftarrow e^{-i\frac{m}{\hbar}\frac{\Delta t}{2}\Phi}\psi & \mbox{kick} \\ \psi \leftarrow \mathrm{IFFT}\left(e^{-i\frac{\hbar}{m}\frac{\Delta t}{2}k^2}\operatorname{FFT}(\psi)\right) & \mbox{drift} \\ \Phi \leftarrow \mathrm{IFFT}\left(-\frac{1}{k^2}\operatorname{FFT}\left(4\pi Gm(|\psi|^2 - \langle |\psi|^2\rangle)\right)\right) & \mbox{update potential} \\ \psi \leftarrow e^{-i\frac{m}{\hbar}\frac{\Delta t}{2}\Phi}\psi & \mbox{kick} \end{array}$$

Choice of time step: $\Delta t < \min\left(\frac{4}{9\pi}\frac{m}{\hbar}a^2\Delta x^2\right), 2\pi\frac{\hbar}{m}a\frac{1}{|\Phi_{max}|}$

- "Exact" solution
- Automatic conservation of mass
- Can adapt existing particle-mesh (PM) code
- Simple implementation

 $\nabla^2 \Phi = 4\pi Gm(|\psi|^2 - \langle |\psi|^2 \rangle)$

Using pseudo-spectral methods to simulate fuzzy dark matter

- Symmetrized split-step Fourier method ("kick-drift-kick")
- Algorithm:

$$\begin{split} i\hbar\partial_t\psi &= -\frac{\hbar^2}{2ma^2}\nabla^2\psi + \frac{m}{a}\Phi\psi\\ \nabla^2\Phi &= 4\pi Gm(|\psi|^2 - \langle|\psi|^2\rangle) \end{split}$$

$$\begin{split} \psi &\leftarrow e^{-i\frac{m}{\hbar}\frac{\Delta t}{2}\Phi}\psi & \text{kick} \\ \psi &\leftarrow \mathrm{IFFT}\Big(e^{-i\frac{\hbar}{m}\frac{\Delta t}{2}k^2}\,\mathrm{FFT}(\psi)\Big) & \text{drift} \\ \Phi &\leftarrow \mathrm{IFFT}\Big(-\frac{1}{k^2}\,\mathrm{FFT}\big(4\pi Gm(|\psi|^2-\langle|\psi|^2\rangle)\big)\Big) & \text{update potential} \\ \psi &\leftarrow e^{-i\frac{m}{\hbar}\frac{\Delta t}{2}\Phi}\psi & \text{kick} \end{split}$$

Choice of time step: $\Delta t < \min\left(\frac{4}{9\pi}\frac{m}{\hbar}a^2\left(\Delta x^2\right), \ 2\pi\frac{\hbar}{m}a\frac{1}{|\Phi_{\max}|}\right)$

- "Exact" solution
- Automatic conservation of mass
- Can adapt existing particle–mesh (PM) code
- Simple implementation

Correspondence of CDM and FDM initial conditions

- Cold dark matter (CDM): Collisionless fluid, described by a phase space distribution function $f(\vec{x}, \vec{v})$
- Can construct a wave function ψ from a distribution function f:

$$\psi(\vec{x}) \sim \sum_{\vec{v}} \sqrt{f(\vec{x},\vec{v})} e^{i^m/\!\!/\hbar \vec{x}\cdot\vec{v} + R_{\vec{v}}}$$

For "cold"/single-stream distribution function:

$$\psi = \sqrt{\frac{\rho}{m}} e^{i\alpha}$$
$$\vec{v} = \frac{\hbar}{m} \nabla \alpha$$

 Grid discretization implies a maximum velocity which can be represented

Mocz, Lancaster, et al. (2018), Mocz, Fialkov, et al. (2020)

$$v < \frac{\hbar}{m} \frac{\pi}{\Delta x}$$

Simon May

Computational cost of fuzzy dark matter simulations

Computational cost scales as $\sim m^{-1}$ with mass, $\sim L^{-2}$ with box size & $\sim N^5$ with grid size!

Why is it hard to simulate fuzzy dark matter? Computational challenges

- Both large scales and small (kpc-scale) de Broglie wavelength must be resolved for correct evolution
- High velocities require high resolution even in low-density regions
 Velocity criterion: v < ^ħ/_m π/_{Δx}
- Time step criterion: $\Delta t \sim \Delta x^2$ (seems to be approach-independent)
- (Tooling: Hydrodynamics codes are designed for *N*-body simulations)

Schive, Chiueh, and Broadhurst (2014)

Resolution effects Impact of lacking resolution

1 Mpc box projections; 99th-percentile velocity in the CDM simulation is $97.2\,{\rm km/s}$

Not immediately obvious that something went wrong!

Resolution effects Halo formation

Evolution is delayed/halted for simulations with insufficient resolution

(images from Schive, FDM Workshop Göttingen 2020)

Largest cosmological FDM simulation so far 8640^3 grid, $10 \frac{\text{Mpc}}{h}$ box, $m = 10^{-22}$ eV (slices through simulation volume)

8640³, $m = 1.0 \times 10^{-22}$, z = 127.00

Largest cosmological FDM simulation so far

200 / h⁻¹ kpc

10¹ (a) 10⁰

10-2

First results: Dark matter power spectrum

May et al., in prep.

First results: Dark matter power spectrum $10 M_{pc/h}$ box simulations

First results: Dark matter power spectrum 5 Mpc/h box simulations

May et al., in prep.

Simon May

Finding halos

Developed modified friends-of-friends halo finder to operate on a Cartesian grid

First results: Halo mass function 10 Mpc/h box simulations

First results: Dark matter halo profiles (stacked) $10 M_{pc/h}$ box simulations

 Fuzzy dark matter halos form central cores with flat density profiles

Adaptive resolution better suited to show inner halos May et al., in prep.

Summary

Main problems for fuzzy dark matter simulations:

- 1. Time integration $\Delta t \sim \Delta x^2$
- 2. Rapid oscillations even in low-density regions
- 3. Large dynamic range: "large"-scale structure simulations must still resolve de Broglie wavelength, limited to $\lesssim 10~{\rm Mpc}/{\rm h}$ box
- 4. "New" field without decades of experience or refined codes/methods as for CDM

Features of FDM dynamics compared to CDM:

- 1. Modified initial power spectrum, small scales suppressed
- 2. Suppression of structure below de Broglie wavelength (\approx kpc) \rightarrow Heisenberg uncertainty principle
- 3. Formation of halo cores
- 4. Fluctuating \approx kpc quantum interference patterns

References

Peccei, R. D. and Helen R. Quinn (June 1977). "CP conservation in the presence of pseudoparticles". In: *Phys. Rev. Lett.* 38, pp. 1440–1443. DOI: 10.1103/PhysRevLett.38.1440.

- Hlozek, Renée et al. (2015). "A search for ultralight axions using precision cosmological data." In: *Phys. Rev. D* 91.10, p. 103512. DOI: 10.1103/PhysRevD.91.103512. arXiv: 1410.2896 [astro-ph.CO].
- Mocz, Philip, Anastasia Fialkov, et al. (Apr. 2020). "Galaxy formation with BECDM II. Cosmic filaments and first galaxies". In: *MNRAS* 494.2, pp. 2027–2044. DOI: 10.1093/mnras/staa738. arXiv: 1911.05746 [astro-ph.CO].
- Schive, Hsi-Yu, Tzihong Chiueh, and Tom Broadhurst (July 2014). "Cosmic structure as the quantum interference of a coherent dark wave". In: *Nature Physics* 10, pp. 496–499. DOI: 10.1038/nphys2996. arXiv: 1406.6586 [astro-ph.GA].
- Mocz, Philip, Mark Vogelsberger, et al. (Nov. 2017). "Galaxy formation with BECDM I. Turbulence and relaxation of idealized haloes" In: *MNRAS* 471, pp. 4559–4570. DOI: 10.1093/mnras/stx1887. arXiv: 1705.05845 [astro-ph.CO].
- Li, Xinyu, Lam Hui, and Greg L. Bryan (Oct. 2018). "Numerical and Perturbative Computations of the Fuzzy Dark Matter Model". In: arXiv: 1810.01915 [astro-ph.CO].
- Mocz, Philip, Lachlan Lancaster, et al. (Apr. 2018). "Schrödinger-Poisson-Vlasov-Poisson correspondence". In: Phys. Rev. D 97.8, 083519, p. 083519. DOI: 10.1103/PhysRevD.97.083519. arXiv: 1801.03507 [astro-ph.C0].