Exploiting HI surveys with stacking.

The HI content of massive galaxies from ALFALFA and GASS

S. Fabello, B. Catinella, G. Kauffmann (MPA), R. Giovanelli, M. Haynes (Cornell), D. Schiminovich (Columbia).

HI content of massive galaxies from stacking

Fabello, S.

Early-types: quiescent/red sequence/ bulge dominated (Bernardi+ 2003, Graves+ 2009a)

 Detection rates varies with samples and depth (from 2 up to 44 %), as well as properties observed

Missing a statistically representative sample

Previous works by: Knapp+ 1985, Wardle & Knapp 1986, Bregman+ 1992, Serra+ 2006, Morganti+ 2006, Helmboldt+ 2007, Grossi+ 2009, ...

Large HI surveys will allow systematic studies

 \bigcup

ALFALFA – Arecibo Legacy Fast ALFA survey G

Giovanelli+ 2005

- □ blind HI survey of the sky, complete census of local HI
- □ Will survey 7000 deg² of the sky out to $z \sim 0.06$
- \Box Low sensitivity \rightarrow biased toward gas-rich galaxies (mostly late-types)

GASS – The GALEX Arecibo SDSS Survey

Catinella, Schiminovich, Kauffmann, SF et al. 2010

□ targeted HI survey of ~1000 massive galaxies, selected by: SDSS spectroscopic survey + GALEX MIS + <u>ALFALFA</u> 0.025 < z < 0.050; 10 < logM_{*}/M_☉ <11.5.

Stack ALFALFA spectra of GASS-selected sample

- □ Stacking of ALFALFA data to constrain HI in the gas poor regime
- HI stacking: eg. Zwaan 2000, Chengalur+ 2001, Lah+ 2007, 2009 Verheijen+ 2007

 Understanding quenching mechanisms: why early-types are passive and remain so?
 AGN feedback? Environmental processes?
 Morphological quenching? Does the bulge affect the gas content?

The Samples

Starting from GASS parent sample (~12000 objects):

- $\Box 10 < log M_{*}/M_{\Theta} < 11.5;$
- \Box 0.025 < z < 0.050;
- maximum overlap SDSS and <u>ALFALFA</u> data available.

Figure 1. Sample A characterization: (a) stellar mass, (b) redshift and (c) NUV-r colour (corrected for Galactic extinction only) distributions, (d) colour-magnitude diagram. The black solid lines/black dots represent the whole sample, while the dashed green histograms/green dots show where the ALFALFA detections lie.

Starting from Sample A, extracted bulge-dominated galaxies:

 $\Box \quad C = R_{90}/R_{50} \ge 2.6;$ best tracer of bulge-to-total ratio (Gadotti 2009; Weinmann+ 2009)

- Best fit De Vaucouleurs;
- \square Inclination < 70°

B-D sample: 1833 targets.

(10 % already detected)

Figure 2. Early-type sample characterization: (a) stellar mass, (b) redshift and (c) NUV-r colour distributions, (d) colour-magnitude diagram. The solid lines/black dots represent the whole sample, while the dashed green histograms/green dots show the ALFALFA detections.

B-Ds ALFALFA detections ne, 11th

B-D Sample

Figure 3. Example of bulge-dominated galaxies, randomly selected from sample B-D. The SDSS images are 1 arcminute square in size.

The Stacking Tool

ALFALFA data-cube: RA, Dec, velocity extracting spectra at given position and redshift

Non-detection

STACK = co-add signal of non-detections higher S/N \rightarrow Flux_{HI} \rightarrow M_{HI}

Extract a spectrum where a source is known to be (α, δ, z)

Align the spectra

Co-add their signal

 $(\Delta \text{noise} \propto \sqrt{N} =$

higher S/N)

 $S'_{\nu}[\mathrm{mJy\,km\,s^{-1}}] = \frac{\sum_{i=0}^{N} \frac{S_{i;\nu}}{rms_i^2}}{\sum_{i=0}^{N} \frac{1}{rms_i^2}}$

Recover a signal!

$$(\Delta \text{noise} \propto \sqrt{N} \Rightarrow \text{higher S/N}) \qquad \qquad \frac{M_{HI}}{M_{\odot}} = \frac{2.356 \times 10^5}{1+z} \left(\frac{D_L(z)}{\text{Mpc}}\right)^2 \left(\frac{\int S \, dv}{\text{Jy km s}^{-1}}\right)^2$$

Roberts 1963

Fabello, S.

All spectra

Non-detection only

All spectra

Non-detection only

Study of Bulge-Dominated Galaxies

HI content of massive galaxies from stacking

Colour is the main parameter which drives the gas content

Fabello, S.

Summary:

- \square The bulge does not affect the gas content.
- $\hfill\square$ Colour (and μ) can be used to predict the average HI content of massive galaxies.
- Our results for sample A in excellent agreement with GASS.
 Catinella, Schiminovich, Kauffmann, SF et al. 2010

A gas disk embedded in the steep potential of a hot spheroid is stable against perturbation.
 Ostriker & Peebles 1976

"Transition from stellar disk to spheroid sufficient to quench star formation, turn the galaxy red and dead while gas accretion continues"

Martig+ 2009

At fixed stellar mass and colour, bulge-dominated objects are expected to be gas richer than disk dominated ones.

Morphological Quenching

Fabello, S.

Summary:

- □ The bulge does not affect the gas content.
- $\hfill\square$ Colour (and μ) can be used to predict the average HI content of massive galaxies.
- Our results for sample A in excellent agreement with GASS.
 Catinella, Schiminovich, Kauffmann, SF et al. 2010
- Our data seem to contradict the Morphological Quenching hypothesis.

Future work:

- explore other quenching mechanisms in the gas poor regime (AGN feedback, environment)
- Apply stacking to SKA precursor facilities eg. ASKAP, MeerKAT
- Extend analysis to higher z

Thank you!

ISKAF2010 - June, 11^{th}