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ABSTRACT

Employing hydrodynamic simulations of structure formation in a ΛCDM cosmol-
ogy, we study the history of cosmic star formation from the “dark ages” at redshift
z ∼ 20 to the present. In addition to gravity and ordinary hydrodynamics, our model
includes radiative heating and cooling of gas, star formation, supernova feedback, and
galactic winds. By making use of a comprehensive set of simulations on interlocking
scales and epochs, we demonstrate numerical convergence of our results on all relevant
halo mass scales, ranging from 108 to 1015 h−1M¯.

The predicted density of cosmic star formation, ρ̇?(z), is broadly consistent with
measurements, given observational uncertainty. From the present epoch, ρ̇?(z) grad-
ually rises by about a factor of ten to a peak at z ∼ 5 − 6, which is beyond the
redshift range where it has been estimated observationally. In our model, fully 50%
of the stars are predicted to have formed by redshift z ' 2.14, and are thus older
than 10.4 Gyr, while only 25% form at redshifts lower than z ' 1. The mean age of
all stars at the present is about 9 Gyr. Our model predicts a total stellar density at
z = 0 of Ω? = 0.004, corresponding to about 10% of all baryons being locked up in
long-lived stars, in agreement with recent determinations of the luminosity density of
the Universe.

We determine the “multiplicity function of cosmic star formation” as a function of
redshift; i.e. the distribution of star formation with respect to halo mass. At redshifts
around z ' 10, star formation occurs preferentially in halos of mass 108−1010 h−1M¯,
while at lower redshifts, the dominant contribution to ρ̇?(z) comes from progressively
more massive halos. Integrating over time, we find that about 50% of all stars formed in
halos less massive than 1011.5 h−1M¯, with nearly equal contributions per logarithmic
mass interval in the range 1010 − 1013.5 h−1M¯, making up ∼ 70% of the total.

We also briefly examine possible implications of our predicted star formation his-
tory for reionisation of hydrogen in the Universe. According to our model, the stellar
contribution to the ionising background is expected to rise for redshifts z > 3, at least
up to redshift z ∼ 5, in accord with estimates from simultaneous measurements of the
H and He opacities of the Lyman-α forest. This suggests that the UV background will
be dominated by stars for z > 4, provided that there are not significantly more quasars
at high-z than are presently known. We measure the clumping factor of the gas from
the simulations and estimate the growth of cosmic HII regions, assuming a range of
escape fractions for ionising photons. We find that the star formation rate predicted
by the simulations is sufficient to account for hydrogen reionisation by z ∼ 6, but only
if a high escape fraction close to unity is assumed.
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1 INTRODUCTION
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Hierarchical galaxy formation (White & Rees, 1978) within a
ΛCDM cosmogony is currently the most successful paradigm
for understanding the distribution of matter in the Universe.
In this scenario, structure grows via gravitational instabil-
ity from small perturbations seeded in an early inflationary

c© 0000 RAS



2 V. Springel and L. Hernquist

epoch. The dominant mass component is (unidentified) col-
lisionless cold dark matter, which also determines the dy-
namics of the baryons on large scales, where hydrodynamic
forces are unimportant compared to gravity. The successes of
the ΛCDM model are impressively numerous, ranging from
a detailed picture of the primary anisotropies of the CMB at
high redshift to the clustering properties of galaxies in the
local Universe.

However, while the dynamics of collisionless dark mat-
ter is quite well understood, the same cannot be said for
the baryonic processes that are ultimately responsible for
lighting up the Universe with stars. Hydrodynamic simula-
tions have been shown to produce reliable results for gas
of low to moderate overdensity, allowing for detailed theo-
retical studies of e.g. the Lyman-alpha forest (Cen et al.,
1994; Zhang et al., 1995; Hernquist et al., 1996) and the
intergalactic medium (e.g. Davé et al., 2001; Croft et al.,
2001; Keshet et al., 2002), but at gas densities sufficiently
high for star formation to occur, our knowledge is much less
certain. Despite numerous attempts to include star forma-
tion in cosmological simulation (e.g. Cen & Ostriker, 1993,
2000; Katz et al., 1996, 1999; Yepes et al., 1997; Weinberg
et al., 1997, 2002; Steinmetz & Müller, 1995; Blanton et al.,
1999; Pearce et al., 1999, 2001; Thacker et al., 2000; Thacker
& Couchman, 2000), progress has been comparatively slow
with this approach, primarily because of the physical com-
plexity of star formation and feedback, but also because of
the computational difficulties inherent in the task of em-
bedding these processes into the framework of hierarchical
galaxy formation.

For this reason, the most popular approach for describ-
ing galaxy evolution in hierarchical universes has been the
so-called semi-analytic technique (e.g. White & Frenk, 1991;
Cole, 1991; Lacey & Silk, 1991; Lacey et al., 1993; Kauff-
mann et al., 1993, 1994; Cole et al., 1994). This method
combines our firm knowledge of the dynamics and growth
of dark matter halos with simplified parameterisations of
the baryonic physics essential to galaxy formation. In this
manner, technical limitations of direct hydrodynamical sim-
ulations can be overcome, allowing some of the consequences
of the assumed physics to be analysed. On the other hand,
the validity of the assumptions underlying the semi-analytic
approach it is not always clear and must be confirmed by
direct hydrodynamic simulations.

Moreover, while semi-analytic techniques are computa-
tionally much less expensive than hydrodynamical simula-
tions, they are quite limited in their ability to relate galaxies
to the surrounding IGM. One strength of hydrodynamical
simulations is that they can explore this relationship from

first principles, making it possible to constrain galaxy for-
mation and evolution using the rich body of observational
data on the IGM, as probed by quasar absorbers. Motivated
by our desire to understand the connection between galaxies
and their environments in detail, we here attempt to refine
the methodology of direct simulations of galaxy formation,
using a novel approach to describe star formation and feed-
back.

In this paper, we focus on one aspect of galaxy evo-
lution; namely the global history of star formation in the
Universe. This is currently one of the most fundamental
quantities in observational and theoretical cosmology, and
it provides a crucial test for any theory of galaxy formation.

Over the last decade, observational results for the redshift
evolution of the cosmic star formation rate density, ρ̇?(z),
have become available, at both low and high redshift (e.g.
Gallego et al., 1995; Madau et al., 1996, 1998; Lilly et al.,
1996; Cowie et al., 1996, 1999; Connolly et al., 1997; Hughes
et al., 1998; Treyer et al., 1998; Tresse & Maddox, 1998; Pas-
carelle et al., 1998; Steidel et al., 1999; Flores et al., 1999;
Gronwall, 1999; Baldry et al., 2002; Lanzetta et al., 2002).
While these measurements are still fraught with large ob-
servational uncertainty, they are nevertheless beginning to
constrain the epoch of galaxy formation. In recent years,
therefore, a number of studies have attempted to compute
ρ̇?(z) theoretically and to compare it with data, using ei-
ther semi-analytic models (Baugh et al., 1998; Somerville
et al., 2001), or numerical simulations (Pearce et al., 2001;
Nagamine et al., 2000, 2001; Ascasibar et al., 2002). How-
ever, because of the complexity of the relevant physics and
the large range in scales involved, the theoretical predictions
have remained quite uncertain, a situation we try to improve
on in this study.

Besides gravity, ordinary hydrodynamics, and collision-
less dynamics of dark matter, our numerical simulations in-
clude radiative cooling and heating in the presence of a UV
background radiation field, star formation, and associated
feedback processes. Cooling gas settles into the centres of
dark matter potential wells, where it becomes dense enough
for star formation to occur. We regulate the dynamics of
the gas in this dense interstellar medium (ISM) by an effec-
tive multi-phase model described by Springel & Hernquist
(2002a). In this manner, we are able to treat star formation
and supernova feedback in a physically plausible and nu-
merically well-controlled manner, although there are clearly
uncertainties remaining with respect to the validity and ac-
curacy of our description.

In principle, the cooling-rate of gas in halos can be com-
puted accurately within simulations, and it is this rate that
ultimately governs the global efficiency of star formation,
provided that strong feedback processes are unimportant.
However, it is clear (White & Frenk, 1991) that cooling by
itself is so efficient that it yields a collapse fraction of baryons
that is considerably higher than that implied by the mea-
sured luminosity density of the Universe (e.g. Balogh et al.,
2001). Simulations and semi-analytic models agree in this
respect (Yoshida et al., 2002). Feedback mechanisms related
to star formation are commonly invoked to reduce the ef-
ficiency of star formation. In our model, we include such a
strong feedback process in the form of galactic winds ema-
nating from star-forming regions. There is observational evi-
dence for the ubiquitous presence of such winds in star form-
ing galaxies both locally and at high redshift (e.g. Heckman
et al., 1995; Bland-Hawthorn, 1995; Lehnert & Heckman,
1996; Dahlem et al., 1997; Martin, 1999; Heckman et al.,
2000; Frye et al., 2002; Pettini et al., 2000, 2001). It is
believed that these galactic outflows are powered by feed-
back energy from supernovae and stellar winds in the ISM,
but their detailed formation mechanism is not entirely clear.
Since we also lack the ability to spatially resolve the inter-
actions of supernova blast waves and stellar winds within
the ISM, we invoke a phenomenological model for the gen-
eration of galactic “superwinds”. Note, however, that the
hydrodynamic interaction of the wind with infalling gas in
the halos and with the IGM is treated correctly by our nu-
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merical code. In particular, we are thus able to investigate
how winds associated with star formation influence galaxy
formation, how they disperse and transport metals, and how
they heat the intergalactic medium.

We base our work on a large set of numerical simula-
tions that cover a vast range of mass and spatial scales. For
example, the masses of resolved halos in our study spans
more than a factor of 109. Our simulation programme was
designed to examine star formation on essentially all rele-
vant cosmological scales, enabling us to arrive at a reliable
prediction for the star formation density over its full history,
ranging from the present epoch far into the “dark ages” at
very high redshift. As an integral part of our simulation set,
we also carried out extensive convergence tests, allowing us
to cleanly quantify the reliability of our results.

As part of our analysis, we introduce a “multiplicity
function of star formation” which gives the cumulative star
formation density per logarithmic interval of halo mass at a
given epoch. Using this quantity, the global star formation
density can be decomposed into the number density of ha-
los of a given mass scale (i.e. the halo “mass function”), and
the average star formation efficiency of halos of a given mass.
Because the cosmological mass function has been reliably de-
termined using large collisionless simulations (Jenkins et al.,
2001), this decomposition allows us to nearly eliminate the
dependence of our results on cosmic variance.

We also briefly investigate the potential relevance of our
results for the reionisation of hydrogen in the Universe. It
is a long-standing question which sources dominate the ion-
ising UV flux as a function of redshift. While the ratio of
HeII and HI optical depths observed at z ∼ 2.4 indicates
that quasars are the most significant source of ionising radi-
ation at this low redshift, it has been suggested that massive
stars might dominate at higher redshift (e.g. Haehnelt et al.,
2001; Sokasian et al., 2002b). Using our results, we test the
possibility that high-z star formation by itself could have
been responsible for reionisation of hydrogen at a redshift of
around z ∼ 6.

This paper is organised as follows. In Section 2, we de-
scribe our simulations, and the analysis applied to them.
We then move on to discuss tests for numerical convergence
in Section 3. In Section 4, we introduce the concept of a
multiplicity function for cosmic star formation, which we
use in Section 5 to derive our composite result for the cos-
mic star formation history, and compare it to observational
constraints. In Section 6, we analyse consequences of our
prediction for the age distribution of stars and then discuss
possible implications for the reionisation of the Universe in
Section 7. Finally, we summarise our findings in Section 8.

2 METHODOLOGY

2.1 Numerical simulations

In this study, we focus on a ΛCDM cosmological model with
parameters Ω0 = 0.3, ΩΛ = 0.7, Hubble constant H0 =
100 h km s−1 Mpc−1 with h = 0.7, baryon density Ωb = 0.04,
and a scale-invariant primordial power spectrum with index
n = 1, normalised to the abundance of rich galaxy clusters
at the present day (σ8 = 0.9). This “concordance” model
provides a good fit to a long list of current cosmological
constraints.

All of our smoothed particle hydrodynamics (SPH) sim-
ulations were performed in cubic boxes with periodic bound-
ary conditions, employing an equal number of dark matter
and gas particles. Besides gravity, the gas particles interact
through pressure forces and gain entropy in hydrodynamic
shocks. We also follow radiative cooling and heating pro-
cesses for a primordial mix of hydrogen and helium, using a
method similar to Katz et al. (1996). We adopt an external
photo-ionising flux that describes radiation from quasars as
advocated by Haardt & Madau (1996), leading to reionisa-
tion of the Universe at redshift z ' 6 (for details, see Davé
et al., 1999).

Star formation and supernova feedback in the ISM are
treated with an effective multi-phase model, which is dis-
cussed in full detail in a companion paper by Springel &
Hernquist (2002a). In brief, our model assumes that rapidly
cooling gas at high overdensity is subject to a thermal insta-
bility which leads to the formation of cold clouds embedded
in a hot ambient medium. Because the resulting multi-phase
structure of the ISM cannot be spatially resolved by avail-
able cosmological simulations, we describe the dynamics of
the star-forming ISM in terms of a ‘sub-resolution’ model,
where coarse-grained averages of fluid quantities are used to
describe the medium. In this method, a sufficiently dense
SPH fluid element will then represent a satistical mixture
of cold clouds and ambient hot gas, with a set of equations
governing the mass and energy exchange processes between
the phases. In particular, we take the cloud material to be
the reservoir of baryons available for star formation. We set
the consumption timescale of the gas to match the observed
“Kennicutt” law (Kennicutt, 1989, 1998) for the star forma-
tion rate in local spiral galaxies. In our formalism, this one
free parameter simultaneously determines a threshold den-
sity, above which the multiphase structure in the gas and
hence star formation is allowed to develop. This physical

density is 8.55 × 106 h2M¯kpc−3 for all simulations in this
study, corresponding to a comoving baryonic overdensity of
7.7 × 105 at z = 0.

In describing star formation numerically, we spawn in-
dependent star particles out of the multi-phase medium with
mass equal to half the original gas particle mass in a stochas-
tic fashion, as described by Springel & Hernquist (2002a).
This avoids any artificial coupling of gas and collisionless
stellar material, while the total increase in particle number
over the course of a simulation is only modest.

With respect to feedback processes, we assume that
massive stars explode as supernovae on a short timescale,
releasing their energy as heat to the ambient medium of the
ISM. We also assume that supernovae evaporate cold clouds
(McKee & Ostriker, 1977), essentially by thermal conduc-
tion, thereby “cooling” the ambient hot gas. This process
establishes a tight self-regulation cycle for the star-forming
ISM. A model quite similar to ours in this respect has been
proposed by Yepes et al. (1997). However, our technique dif-
fers significantly in the physical parameterisation of cloud
evaporation and the star formation timescale, and also in
its numerical implementation.

In addition to this treatment of the multi-phase struc-
ture of the ISM, we have included a phenomenological model
for galactic outflows in the simulations in our present study.
The motivation for this was twofold. On one hand, there
is a large body of observational evidence for the ubiqui-
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Figure 1. Illustration of the attributes of the simulations analysed in this study. We consider five different box sizes, ranging from
100 h−1Mpc to 1 h−1Mpc. For each box size, a number of simulations have been run, with particle number between 2×643 and 2×3243.

In the diagram, each simulation is represented by a rectangle whose area is proportional to the particle number. The horizontal width
of each rectangle gives the spatial dynamic range of the corresponding run, from the gravitational softening scale (left edges) to the box
size (right edges), while the lower edge indicates the ending redshift of each run. Numerical parameters of the simulations are listed in
Table 1.

Simulation L [ h−1Mpc ] Resolution mDM [ h−1M¯ ] mgas [ h−1M¯ ] zstart zend ε [ h−1kpc ]

Z1 1.000 2 × 643 2.75 × 105 4.24 × 104 199 6 0.63

Z2 1.000 2 × 963 8.16 × 104 1.25 × 104 199 6 0.42
Z3 1.000 2 × 1443 2.42 × 104 3.72 × 103 199 6 0.28

Z4 1.000 2 × 2163 7.16 × 103 1.10 × 103 199 6 0.19

R1 3.375 2 × 643 1.06 × 107 1.63 × 106 199 4 2.11

R2 3.375 2 × 963 3.14 × 106 4.84 × 105 199 4 1.41
R3 3.375 2 × 1443 9.29 × 105 1.43 × 105 199 4 0.94

R4 3.375 2 × 2163 2.75 × 105 4.24 × 104 199 4 0.63

Q1 10.00 2 × 643 2.75 × 108 4.24 × 107 159 2.75 6.25
Q2 10.00 2 × 963 8.16 × 107 1.25 × 107 159 2.75 4.17
Q3 10.00 2 × 1443 2.42 × 107 3.72 × 106 159 2.75 2.78

Q4 10.00 2 × 2163 7.16 × 106 1.10 × 106 159 2.75 1.85
Q5 10.00 2 × 3243 2.12 × 106 3.26 × 105 159 2.75 1.23

D3 33.75 2 × 1443 9.29 × 108 1.43 × 108 159 1 9.38

D4 33.75 2 × 2163 2.75 × 108 4.24 × 107 159 1 6.25
D5 33.75 2 × 3243 8.15 × 107 1.26 × 107 159 1 4.17

G3 100.0 2 × 1443 2.42 × 1010 3.72 × 109 79 0 18.0

G4 100.0 2 × 2163 7.16 × 109 1.10 × 109 79 0 12.0

G5 100.0 2 × 3243 2.12 × 109 3.26 × 108 79 0 8.00

Table 1. Numerical simulations analysed in this study. Identical cosmological parameters were employed in all the runs, and the same
simulation technique for treating star formation and feedback processes was used throughout. For each of our five different box-sizes,

we carried out a number of simulations, differing only in mass and spatial resolution. In the table, we list the names of the runs, their

particle and mass resolutions, their starting and ending redshifts, and the gravitational softening length ε. Simulations with particle

resolutions of 2 × 643 carry a label ‘1’ in their names, those with 2 × 963 are labelled with ‘2’, and so on, up to the 2 × 3243 runs which
are labelled with a ‘5’. The simulations have been carried out with a massively parallel TreeSPH code. Runs at the ‘1’-level were done

on 4 processors, and for each higher level, we doubled the number of processors so that level-5 runs were computed on 64 processors.
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Figure 2. Projected baryonic density fields in slices through a selection of our simulations at various redshifts. In each case, the slice has

a thickness equal to 1/5 of the box-size of the corresponding simulation (see Table 1). The Z4 simulation in the top left has the highest
spatial resolution, allowing to identify the hot “bubbles” in the IGM that develop as a result of impinging galactic winds. These bubbles

are filled with gas with temperatures up to 106 K, as seen in the projected mass-weighted temperature map in the top right.
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Figure 3. The two panels on top compare the projected baryonic density field in slices through the Q1 and Q4 simulations at z = 3. It
is seen that the runs yield the same large-scale structure, as intended by our method for generating the initial conditions. In the bottom

four panels, we zoom in on the region marked by a white rectangle, and show all four members of the Q-Series, where the mass resolution

is increasing by a factor of about 40 along the sequence Q1, Q2, Q3, to Q4. In these panels, the gas density is shown in a blue colour

scale, and the density of star particles is in red. The higher resolution runs in the series reproduce the objects previously seen in the low
resolution realisations, but they are able to resolve larger numbers of low-mass halos, and they also improve the sampling of structures,

giving them a “crisper” appearance. Note, however, that the brightness of the largest objects, as measured by the density of star particles

shown in red, appears to be quite similar. This sense of convergence will be quantified more precisely in Section 3.
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tous presence of such galactic winds (e.g. Heckman et al.,
1995; Bland-Hawthorn, 1995; Lehnert & Heckman, 1996;
Dahlem et al., 1997; Martin, 1999; Heckman et al., 2000).
On the other hand, galactic-scale outflows provide one of the
most attractive mechanisms for understanding how the low-
density intergalactic medium was chemically enriched with
heavy elements, and they might also play a crucial role in
the global regulation of star formation, suppressing its over-
all efficiency to the “low” values suggested by observational
estimates of the luminosity density of the Universe. Simula-
tions without strong kinetic feedback invariably overpredict
the luminosity density of the Universe due to the high effi-
ciency of gas cooling (e.g. Balogh et al., 2001).

In our fiducial parameterisation of this process, each
star-forming galaxy drives a wind with a mass-outflow rate
equal to two times its star formation rate, and with a wind-
velocity of vw = 484 km s−1. These choices are deliberately
“extreme” in the sense that the total kinetic energy of the
wind is then of order the energy released by supernovae.
Note, however, that these wind parameters are characteris-
tic of the properties of outflows associated with star-forming
disks (e.g. Martin, 1999). In addition to the simulations
listed in Table 1, which all employed these fiducial values
in our wind model, we performed other runs with differing
particle number and in boxes of different sizes in which we
varied only the intensity of the winds. In this manner, we
were able to examine the sensitivity of our conclusions to
the presence or absence and strength of the winds.

On a technical level, the winds in the simulations are
set up by stochastically selecting gas particles from the star-
forming ISM and “adding them” to a wind by modifying
their velocity vectors appropriately. While the generation
of the wind is hence purely phenomenological, subsequent
interactions with surrounding gas are handled properly by
our hydrodynamical code. The winds may thus intercept or
entrain infalling gas, shock the IGM and even produce hot
bubbles within it. Whether or not a wind can escape from a
galaxy depends primarily on the depth of the galaxy’s dark
matter potential well. Halos with virial temperatures below
∼ 106 K have central escape velocities lower than the wind
speed and can lose some of their baryons in an outflow, while
more massive halos will contain winds, to the extent that
winds become progressively less important for the regulation
of star formation in more massive objects.

The fact that winds are expected to be especially impor-
tant on small mass scales points to one of the main numerical
challenges encountered in simulating hierarchical galaxy for-
mation. At high redshift, most of the star formation takes
place in low-mass galaxies, which form in abundant numbers
as progenitors of more massive systems. Resolving the ear-
liest epochs of star formation, therefore, requires very high
mass resolution. However, at low redshift, star formation
shifts to progressively more massive systems. At these late
times, it is necessary to simulate a large cosmological volume
in order to obtain a fair sample of the high-end of the mass
function. Obviously, the simultaneous requirements of high
mass resolution and large simulation volumes will quickly
exhaust any computational resource.

For example, a simulation which attempts to fully re-
solve star formation in all star forming halos from high-
z to the present would have to follow a cosmological vol-
ume of ∼ (100 h−1 Mpc)3, at a mass resolution of about

106 h−1M¯, assuming here for the moment that star forma-
tion is restricted to halos of mass larger than 108 h−1M¯,
and that a mere 100 SPH particles are sufficient to obtain
a reasonably accurate estimate of the star formation rate
in a halo. This would require of order 1011 simulation parti-
cles, which is substantially beyond what is currently feasible.
Note that unlike in purely gravitational bottom-up growth
of structure, feedback processes associated with winds of-
fer the possibility that star formation on small mass scales
could influence the gas dynamics on larger scales. Degrading
the mass resolution thus may have more problematic conse-
quences than in purely collisionless simulations, because it
means that the effects of winds coming from low-mass halos
can be lost.

Rather than attempting to resolve the cosmic star for-
mation history in a single calculation, we have, therefore,
selected a different strategy. We have simulated a series of
cosmological volumes with sizes ranging from 1 h−1Mpc to
100 h−1Mpc per edge, with intermediate steps at box sizes
3.375, 10.0, and 33.75 h−1Mpc. The smaller boxes are run
only to a redshift where their fundamental mode starts to
become non-linear. Roughly up to this point, the boxes can
at least approximately be taken as a fair sample of a ΛCDM
universe on the scales they are intended to represent.

For each of the box sizes, we have performed a num-
ber of runs, varying only the mass and spatial resolution. In
particular, we have repeatedly increased the mass resolution
in steps of 1.53, and the spatial resolution in steps of 1.5.
For example, our lowest resolution run of the 10.0 h−1Mpc
box had a resolution of 2 × 643 particles (‘Q1’-run), which
we then stepped up sequentially to 2 × 963 (‘Q2’), 2 × 1443

(‘Q3’), 2 × 2163 (‘Q4’), and finally to 2 × 3243 (‘Q5’). In
this progression, the mass resolution in the gas is hence im-
proved by a factor ∼ 130 from 4.2 × 107 h−1Mpc (Q1) to
3.3 × 105 h−1Mpc (Q5), and the 3D spatial resolution by a
factor ∼ 5 from 6.25 h−1kpc to 1.23 h−1kpc. For all simu-
lations which form such a series, we generated initial con-
ditions such that the amplitudes and phases of large-scale
waves were identical; i.e. a higher resolution simulation in a
series had the same initial fluctuations on large scales as any
of the lower resolution fellow members of its series, with ad-
ditional waves between the old and new Nyquist frequencies
sampled from the power spectrum randomly. In this manner,
a numerical convergence study within a given series becomes
possible which is free of cosmic variance and where an object
by object comparison can be made. Note, however, that for
different box sizes we have chosen different initial random
number seeds, so that they constitute independent realisa-
tions.

While the simulations within a given series enable us
to cleanly assess the convergence of star formation seen
on a given halo mass scale, the dynamic range of even a
2 × 3243 simulation is too low to identify all the star for-
mation occurring in the Universe. This is where our dif-
ferent box sizes come in. They provide us with a sequence
of interlocking scales and epochs, enabling us to signifi-
cantly broaden the dynamic range of our modeling. For the
1 h−1Mpc box of the “Z-series”, we reach mass resolutions of
up to 1.1×103h−1Mpc, making it possible to resolve the gas
content even in “sterile” dark matter halos which are never
able to condense gas in their centres by atomic line cooling.
Apart from a putative population III (e.g. Carr et al., 1984;
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Bromm et al., 1999; Abel et al., 2002), most of them are thus
never expected to form stars. At the other end of the spec-
trum, we resolve rich galaxy clusters in our “G-series” runs,
which have a volume 106 times larger than the “Z-series”,
but a correspondingly poorer mass resolution.

We show a graphical illustration of the numerical sim-
ulations analysed in our present study in Figure 1, and give
a complete list of their properties in Table 1, together with
some important numerical parameters. As a naming conven-
tion, the simulations are denoted by a single character that
indicates their box size, and a number that gives the parti-
cle resolution, from “1” for 2 × 643 to “5” for 2 × 3243. All
the simulations were performed on the Athlon-MP cluster at
the Center for Parallel Astrophysical Computing (CPAC) at
the Harvard-Smithsonian Center for Astrophysics. We used
a modified version of the parallel GADGET-code (Springel
et al., 2001), and integrated the entropy as the independent
thermodynamic variable (Springel & Hernquist, 2002b).

2.2 Slices through the gas density field

In Figure 2, we show projected baryonic density fields for
each of our five simulation volumes, illustrating the range
of scales encompassed by the simulations. In each case, we
visualise the gas density in slices of thickness 1/5 of the
simulation box. To show nearly all of the simulation vol-
ume in one projection, we have tilted the slices slightly with
respect to the principal axes of the simulation boxes (by
26.6o around the y-axes, and once more by 26.6o around the
x′-axes). Using the periodicity of the volumes, we can then
extend the side-length of the projection to

√
5 times the orig-

inal box size, while approximately avoiding the repetition of
structure. In the given representation, we then obtain a thin
slice that has exactly the volume of the full simulation box
and displays about 90% of its content uniquely. Alternative
ways of displaying the “full” simulation would either have
to employ several different slices, or would have to project
using a slice of thickness equal to the box size itself, leading
to a confusing superposition of many structures.

As part of Figure 2, we also show a mass-weighted tem-
perature map of a Z-series run at z = 6. In the correspond-
ing density map, it is apparent how the first star-forming
galaxies drive vigorous outflows that produce hot “bubbles”
in the IGM. As seen in the temperature map, these bub-
bles are filled with gas at temperatures up to 106 K. We
plan to investigate the impact of these outflows on the IGM
in forthcoming work. We note here, however, that the winds
are capable of stripping some gas from halos nearby, thereby
providing an indirect source of negative feedback in the form
advocated by Scannapieco et al. (2001).

In Figure 3, we show a comparison of four simulations
within the Q-Series having different mass resolution at red-
shift z = 3. It is apparent that better mass resolution leads
to more finely resolved structure, and to a larger number of
small halos that were previously unresolved. Note, however,
that the pattern of large-scale structure and the location of
the most massive halos is virtually unchanged, as expected,
given our method for constructing the initial conditions for
the runs in this series.

2.3 Halo definition

Using our approach, we can directly measure the total star
formation rate in a simulation box at each timestep. How-
ever, we are interested not only in the cumulative star for-
mation rate normalised to unit comoving volume, but also
in the way this rate can be broken up into contributions
from various halo mass scales. It should be emphasised that
our requirement for the gas to be highly overdense for star
formation to occur essentially guarantees that this process
is entirely restricted to the centres of dark halos, with no
stars forming in the low-density IGM.

In order to identify virialised halos as sites of star for-
mation, we begin by applying a “friends-of-friends” (FOF)
group finding algorithm to the dark matter particles, using
a fixed comoving linking length equal to 0.2 times the mean
interparticle spacing of the dark matter particles. We re-
strict the algorithm to the dark matter because it is unclear
how one should deal with the varying particle number and
particle type used to represent the baryons in the simula-
tions. Owing to the collapse of a large fraction of the gas
to very high overdensity, one could introduce biases close to
the group detection threshold if a FOF procedure were ap-
plied to all particles on an equal footing. It thus seems safer
to restrict ourselves to group selection based on dark mat-
ter particles alone, which to first order will be unperturbed
by the baryonic physics, permitting a selection of the same
structures as in an equivalent simulation that followed only
dark matter, to a good approximation.

In a second step, we then associate each gas or star
particle with its nearest dark matter particle and discard
all groups with fewer than 32 dark matter particles, result-
ing in our final “FOF catalogue”. Note that Jenkins et al.
(2001) have shown that the construction of group catalogues
using the same linking length for all cosmologies and red-
shifts, independent of Ω(z), leads to mass functions that can
be described by a single fitting formula. Group catalogues
selected at a constant comoving overdensity with respect to
the background, as we do here, are thus easier to interpret
than ones obtained by trying to account for the scaling of
the virial overdensity with cosmological parameters.

For the analysis of the star formation multiplicity func-
tion discussed in Section 4, we will use the FOF catalogues
directly, taking the total mass of each group as a “virial”
mass, and the sum of the star formation rates of all a group’s
SPH particles as the halo’s star formation rate. Following
Mo & White (2002), we assign a physical radius to a halo of
mass M according to

r200 =

[

GM

100 Ωm(z)H2(z)

]1/3

=
1

1 + z

[

GM

100Ω0H2
0

]1/3

, (1)

and a corresponding circular velocity Vc = (GM/r200)
1/2.

We also define a “virial” temperature as

T =
µV 2

c

2k
' 36

(

Vc

km s−1

)2

K, (2)

where µ ' 0.6mp is the mean molecular weight of the ionised
plasma found in halos hotter than 104 K.

However, for a comparison of halos on an object-by-
object basis between the different runs of a given series,
it is advantageous to reduce the noise in the virial mass
assignment by using the spherical overdensity algorithm to
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Figure 4. Evolution of the cosmic star formation rate density in

the simulations of the Z-, R-, and Q-series. For increasing mass-

resolution, there is clearly more star formation resolved at high

redshift. However, in every case, there is a certain redshift at

which the simulations begin to agree very well. The mass resolu-

tion required to reach this convergence point is a function of red-
shift and becomes increasingly more demanding towards higher

redshift.

define the positions and virial radii of halos. To this end,
we find the minimum of the gravitational potential of each
FOF group, and define the location of the corresponding
particle as the halo center. We then grow spheres until they
enclose a comoving overdensity of 200 with respect to the
mean background density, with the star formation rate of
the halo being simply defined as the sum of all the star
formation rates of the enclosed SPH particles. In order to
match objects between different simulations of a series, we
consider the halos of one of the simulations in declining order
of mass, and find for each of them the nearest halo in the
other simulation. Each halo is only allowed to become a
member of one matching pair in this process.

3 NUMERICAL CONVERGENCE TESTS

In this section, we examine the numerical convergence of our
simulation results for star formation rates. Figure 4 shows
the evolution of the cosmic star formation rate density in the
simulations making up the Z-, R-, and Q-Series. In all three
cases, the higher resolution simulations predict substantially
more star formation at high redshift, but at sufficiently low
redshift, the results of the different runs begin to agree quite
well.

This behaviour is not surprising. It is clear that simu-
lations with higher mass resolution are able to measure star
formation rates in halos of mass smaller than previously re-
solved. Furthermore, towards higher redshift, the bulk of the
star formation shifts to progressively lower mass scales, as
expected for hierarchical growth of structure, making it ever
more important to resolve low mass objects.

While the convergence between the simulations within
a given series at low redshift is encouraging, the disagree-
ment at high redshift implies that none of our simulations
alone can be used to reconstruct the star formation history
from low to very high redshift. Fortunately, however, the
mass resolution needed to achieve convergence at a given
redshift is a function of epoch. It becomes increasingly less
demanding to do this at lower redshift because at that point
increasingly more massive halos dominate the star formation
rate. This opens up the possibility of combining simulations
on different scales to obtain a composite result for the full
history of star formation. This is the approach we use in the
present analysis.

However, this strategy can succeed only if we can
demonstrate that reliably converged star formation rates can
be obtained for individual objects. In Figure 5, we compare
halos in the simulations of the Q-series directly with one
another, and in Figure 6 we perform the same check for the
R-series. In particular, we compare the virial mass, the total
mass of stars inside the virial radius, and the total star for-
mation rate within the virial radius, where the properties of
halos have been defined using the spherical overdensity al-
gorithm. For each of these three quantities, we show scatter
plots that directly compare the 2 × 1443 and 2 × 2163 res-
olutions of the series. In addition, we consider the 50 most
massive halos explicitly, and compare all four simulations of
the series with one other in the relevant panels.

From this comparison it is clear that for the most mas-
sive systems the agreement between the simulations is quite
good, without any obvious bias towards lower or higher val-
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Figure 5. Object-by-object comparison of halos in the Q-Series at redshift z = 3. We analyse the convergence of the virial mass (top

row), the total mass of stars inside the virial radius (middle row), and the total star formation rate within the virial radius (bottom row).

In the panels on the left, we plot a direct comparison of measurements for the Q3 and Q4 runs for each of these three quantities. In the

panels on the right, we compare results for the 50 most massive halos of all four simulations of the series. Here, the horizontal axes give
the number of each halo, in decreasing order of mass. On the vertical axes, we plot for each run the relative deviation of the measured

quantity for each halo from the mean of all four runs.
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Figure 6. Object-by-object comparison of halos in the R-series at redshift z = 4. As in Figure 5, we analyse the convergence of the

virial mass (top row), the total mass of stars inside the virial radius (middle row), and the total star formation rate within the virial

radius (bottom row). In the panels on the left, we plot for each of these three quantities a direct comparison of measurements for the R3

and R4 runs. In the panels on the right, we compare results for the 50 most massive halos of all four simulations of the series, where the
horizontal axes simply give the number of each halo, in decreasing order of mass. On the vertical axes, we plot for each run the relative

deviation of the measured quantity for each halo from the mean of all four runs.

c© 0000 RAS, MNRAS 000, 000–000



12 V. Springel and L. Hernquist

ues of the measured quantities as a consequence of resolution
effects. Overall, we consider the comparison to be an impor-
tant success. It shows that we have indeed formulated a nu-
merically well controlled model for cooling, star formation
and strong feedback by galactic outflows. We are not aware
that other simulations of cosmological galaxy formation have
been demonstrated to pass similar tests with equally good
results.

Only close to the resolution limit do we notice a ten-
dency for lower resolution simulations to overpredict the star
formation rate. This effect will show up again in the analysis
of Section 4. It can be understood as a consequence of the
lack of star formation and feedback in unresolved progenitor
halos. As a result, a newly formed halo in a low-resolution
run will initially have a gas fraction that is essentially equal
to the universal baryon fraction, while in a corresponding
higher-resolution simulation the gas fraction for the same
halo can be lower than this because its progenitors were al-
ready able to form stars and lose some of their baryons in
galactic outflows.

In summary, the results presented in this section give
us confidence that we can obtain meaningful, numerically
well-converged results for the star formation rate in a given
object at a given epoch. The reason we cannot easily obtain a
similarly well-converged result for the cosmic star formation
density with a single simulation lies in our failure to obtain
a complete sampling of the cosmological mass function to-
gether with sufficient mass resolution in one simulation box.
A way to circumvent this difficulty will be discussed in the
next section.

4 THE MULTIPLICITY FUNCTION OF

COSMIC STAR FORMATION

It is clear that the evolution of the cosmic star formation
rate density, ρ̇?(z), is of fundamental importance to cosmol-
ogy. At a given epoch, the function ρ̇?(z) will take on a
single value, and, hence, does not describe which objects are
responsible for the bulk of star formation occurring at that
redshift. To address this issue, we develop the notion of a
distribution function of star formation with respect to halo
mass; a quantity we will refer to as the “multiplicity func-
tion of cosmic star formation”. In defining this property of
star forming objects, we implicitly assume that the mass in
the Universe can be meaningfully partitioned among gravi-
tationally bound halos, and that star formation is restricted
to these halos. The problem thus naturally decomposes into
determining the number distribution of halos as a function
of mass, the so-called mass function, and then measuring
the average star formation rate in halos of a given mass.

We start by briefly reviewing the concept of a cosmolog-
ical mass function. Let F (M, z) denote the fraction of mass
that is bound at epoch z in halos of mass smaller than M . It
follows that the comoving differential mass function of halos
is given by

n(M, z) =
ρ

M

dF

dM
, (3)

where ρ is the comoving background density, and
n(M, z) dM gives the number density of halos in a mass
interval dM around M .

Press & Schechter (1974) proposed that F (M, z) can be
approximated by

F (M, z) = erf

[

δc√
2 σ(M, z)

]

, (4)

where δc = 1.686 is the (linearly extrapolated) critical over-
density for top-hat collapse, and σ(M, z) describes the rms
fluctuations of the linearly evolved density field at redshift
z, smoothed by a top-hat sphere that just encloses a back-
ground mass equal to M . The variance of the filtered density
field is given by

σ2(M, z) =

∫

Pz(k) |WR(k)|2 d3k, (5)

where WR(k) = 3j1(kR)/(kR), R = [3M/(4πρ)]1/3, and
Pz(k) denotes the power spectrum linearly evolved to red-
shift z.

Overall, the Press-Schechter (PS) mass function pro-
vides a surprisingly good description of numerical N-body
simulations of non-linear gravitational growth of structure.
However, recent high precision work has also clearly estab-
lished that there are non-negligible discrepancies between
PS theory and simulations. The PS formula overpredicts the
abundance of halos at intermediate mass-scales, and under-
predicts the abundance of both low and high mass halos.
This deficiency has led to the development of more accurate
fitting formulae.

In particular, Sheth & Tormen (1999) have found a sig-
nificantly improved parameterisation, based on an excursion
set formalism. The Sheth & Tormen (1999) mass function
can be expressed as

n(M, z) =
ρ

M2

d ln σ−1

d ln M
f(σ), (6)

where

f(σ) = A

√

2a

π

[

1 +

(

σ2

aδ2
c

)p]

δc

σ
exp

(

− aδ2
c

2σ2

)

, (7)

with A = 0.3222, a = 0.707, and p = 0.3. Sheth et al. (2001)
and Sheth & Tormen (2002) also showed that this modified
mass function can be understood in terms of an extension
of the excursion set formalism that allows for ellipsoidal col-
lapse.

In a comprehensive analysis of a number of N-body sim-
ulations, Jenkins et al. (2001) showed that the Sheth & Tor-
men mass function works remarkably well over at least four
decades in mass. In addition, the quality of the fit is nearly
independent of cosmology, power spectrum, and epoch, pro-
vided that δc = 1.686 is taken in all cosmologies and the
mass function is measured at fixed comoving overdensity,
independent of Ω(z). If instead the expected cosmological
scaling of the virial overdensity for top-hat collapse is used
in the construction of the halo catalogue itself, the univer-
sality of the mass function is slightly broken. It is clearly
preferable to have a universal mass function for all cosmolo-
gies; hence, we have identified our halos at fixed comoving
overdensity.

The mass function may also be expressed in terms of
the multiplicity function g(M) of halos, which we define as

g(M) =
dF

d log M
. (8)
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Figure 7. Mean star formation rate s(M, z) =
〈

Ṁ?

〉

/M in halos, normalised to the halo mass. Each panel shows results for a different

redshift. Halos have been binned into logarithmic intervals of width dlogM = 0.2, with the thick lines showing the mean in each bin for

several different simulations. The thin line is the spline fit for our best estimate of s(M, z). Vertical lines in each panel mark the mass
resolution limits (32 particles) of the FOF catalogues of the simulations shown.

This quantity gives the fraction of mass that is bound in ha-
los per unit logarithmic interval in mass. In a plot of g(M)
versus log M , the area under the curve then directly corre-
sponds to the fraction of mass bound in the respective mass
range. For the Sheth & Tormen mass function, the multi-
plicity function is given by

g(M) = f(σ)
d ln σ−1

d log M
. (9)

We now introduce a similar quantity for the cosmic star
formation rate density. Let us define

s(M, z) =

〈

Ṁ?

〉

M
(10)

to be the mean star formation rate of halos of mass M at

epoch z, normalised to the masses of the halos. With this
normalisation, s(M, z) makes possible a direct comparison
of the mean efficiency of star formation between halos of
different mass. Much of the effort of the numerical work of
this paper is focused on trying to measure this function from
our set of simulations over a broad range of mass scales and
redshifts.

Once s(M, z) is known, the cosmic star formation rate
density can be computed from

ρ̇?(z) = ρ

∫

s(M, z) g(M, z) d log M. (11)

We call the function

S(M, z) = s(M, z) g(M, z) (12)
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Figure 8. Normalised star formation rate s =
〈

Ṁ?

〉

/M in a se-
ries of small test simulations of isolated NFW halos at z = 0. The
halos have been set-up in virial equilibrium with masses between
107 and 1015 h−1M¯, all with a self-similar structure initially.
We have then evolved them with the same model for cooling, star

formation, and feedback as in the cosmological simulations, and
measured their star formation rates at a time 2.5 Gyr after the
simulations were started. Despite the simplicity of these simula-
tions, a qualitatively similar behaviour as for the function s̃z(T )

measured from the full cosmological simulations is observed. Note
in particular the suppression of star formation in halos with virial
temperatures below 106 K (where galactic winds can escape), the
complete absence of star formation for virial temperatures below

104 K (due to the absence of radiative cooling mechanisms), and
the peak at a temperature ∼ 107 K (due to the decline of the

efficiency of cooling flows at still higher temperatures).

the multiplicity function of star formation, in analogy to the
multiplicity function of the halo mass distribution.

There are a number of advantages to factoring the star
formation rate in the manner suggested by equations (11)
and (12). First, a plot of S(M) versus log M cleanly illus-
trates which halo mass scales are responsible for the bulk
of star formation occurring at a given epoch. Second, even
if a numerical simulation can provide an accurate measure-
ment of s(M, z) over an extended range of mass scales, it is
difficult if not impossible for any simulation to accurately de-
termine the mass function g(M, z) at the same time. This is
because accurate measurements of s(M, z) primarily require
high mass resolution, which typically necessitates the use of
rather small simulation volumes, resulting in a poor repre-
sentation of the cosmological mass function. In particular,
at the high-mass end, one will typically suffer from com-
pleteness problems. However, the analytic form of the mass
function can then be used to compute an estimate of the ex-
pected star formation density in a simulation in which the
mass function was sampled precisely. Provided that s(M, z)
varies sufficiently slowly with M , it may be also be possible
to extrapolate s(M, z) into regions not well probed by the
simulation, although this procedure clearly requires some
caution.

In Figure 7, we show examples of our measurements

of s(M, z) from the simulations. At each redshift, we have
binned the halos by mass in logarithmic intervals of width
dlogM = 0.2, and computed the arithmetic mean of Ṁ?/M
for each bin. Using the different simulation results available
at each redshift, we then fitted a smooth spline function to
our results, which represents our best estimate for s(M, z) =
〈

Ṁ?

〉

/M . Note that this is not an entirely straightforward
process, as a cursory look at the example measurements in
Figure 7 shows.

In particular, simulations that cannot resolve all star
forming halos above Tvir ' 104 K exhibit a biased result
at their resolution limit, in the form of an overestimate of
〈

Ṁ?

〉

/M . This is because star formation and feedback in
halos of still lower mass were missed in these simulations,
so the gas fraction has not been reduced yet by galactic
outflows in progenitor halos, unlike in simulations at higher
mass resolution. There is hence a “compensation effect” in
simulations with poor mass resolution. Some of the star for-
mation missed in unresolved halos is shifted towards the first
generation of halos that are resolved, partly making up for
what was missed.

Obviously, these biases complicate the measurement of
s(M, z) considerably, particularly if only a single redshift
is considered. However, we are aided by our large set of
simulations of different mass resolution, and also by the fact
that s(M, z) appears to maintain its shape surprisingly well
when expressed as a function of virial temperature, i.e. when
s(M, z) is factored as

s(M, z) = q(z) s̃z(Tvir), (13)

where Tvir is the virial temperature of a halo of mass M
at redshift z. Here q(z) describes an “amplitude” function,
and s̃z(T ) is the “shape” of the normalised star formation
rate as a function of virial temperature. To a very good ap-
proximation, this shape appears to be independent of epoch,
i.e. all the redshift dependence can be absorbed into the
global scaling parameter q(z). Only at virial temperatures
between ' 104 K and ' 5×104 K is this not fully true. Here,
the photoionising background reduces the efficiency of star
formation during reionisation, which we take into account
as a residual dependence of s̃z(T ) on redshift.

Using our large set of simulations at many different out-
put redshifts, we find that there is a rapid rise of s̃z(T ) at the
onset of star formation, followed by a shallow increase to-
wards more massive halos. At a temperature of about 106 K,
s̃z(T ) begins to increase more rapidly. This scale is very
likely related to the velocity of the galactic winds that star
forming regions can generate in our simulations. For halos
with virial temperatures above 106 K, winds are expected
to be unable to flow out into the IGM. This renders the
feedback induced by outflows much less efficient. Finally, at
a temperature of about 107 K, the rate of star formation
begins to fall again, presumably because halos start to ex-
perience less efficient cooling flows. Note that the peak can
only be explored at low redshift, when the corresponding
halos have actually formed. At high redshift, we formally as-
sume that it still exists in our parameterisation of s̃z(T ), but
whether or not this is actually true is unimportant, because
the halo multiplicity function vanishes at the corresponding
mass scales at high redshift, so that no contribution to ρ̇?(z)
arises.

We have also carried out a number of small test simula-
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Figure 9. Multiplicity function of star formation (shaded) as a function of redshift. This quantity is defined as the product of our

measurements for s(M, z) =
〈

Ṁ?

〉

/M with the Sheth & Tormen multiplicity function (solid line) for the bound mass in halos. On the

top axes of each panel, we give the corresponding virial temperature scale at each epoch, and we indicate the temperature 104 K by a

dotted vertical line.
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tions of isolated halos to see whether the behaviour of s̃z(T )
measured in the cosmological simulations can be qualita-
tively recovered by studying isolated systems. To this end,
we set up a series of isolated NFW-halos (Navarro et al.,
1996, 1997) consisting of dark matter and gas, with the gas
initially being distributed like the dark matter. Initial parti-
cle velocities and gas temperatures were assigned so that the
halos begin in virial equilibrium to very good approximation,
with concentration c = 10, baryon mass fraction fb = 0.13,
and spin parameter λ = 0.1. We set up 17 halos with to-
tal masses spaced logarithmically between 107 h−1M¯ and
1015 h−1M¯, using 40000 gas and 80000 dark matter parti-
cles, and with physical sizes corresponding to their expected
extent at z = 0. We then evolved these halos in isolation
using the same model for cooling, star formation, and feed-
back as used in the cosmological runs, except that there was
no ionising UV background. Note that the initial conditions
for all the halos were identical except for an overall scaling,
i.e. without the physics of cooling and star formation they
would evolve in a self-similar manner.

In Figure 8, we show the normalised star formation rate
in these models at a time t = 2.5 Gyr after the simulations
have been started. At this point, the halos form stars at an
approximately steady rate, with the initial rapid phase of
disk formation already being largely completed. We expect
that a measurement at this time should be qualitatively sim-
ilar to s̃z(T ) inferred from the cosmological simulations, and
this is indeed the case. Note, in particular, the interesting
maximum at a temperature of around 107 K. More massive
halos exhibit a lower star formation rate because their cool-
ing flows are less efficient when normalised to the total gas
content of the halo. These results demonstrate that we are
able to faithfully match the properties of individual forming
galaxies in our cosmological volumes.

It is also interesting to note that the “amplitude” q(z)
measured in the cosmological simulations scales approxi-
mately as q(z) ∝ (1 + z)3 over an extended redshift interval
between z ∼ 1 − 8, with the scaling being somewhat slower
at very low and very high redshift. This result can be un-
derstood if at intermediate redshifts the halos are modelled
as self-similar, with the star formation rate following the
cosmological scaling of the cooling time.

In Figure 9, we show our final result for the multiplicity
function of the cosmic star formation rate density. Follow-
ing equation (12), we have defined it as the product of our
spline fits for s(M, z) obtained from our full set of simu-
lations with the Sheth & Tormen multiplicity function for
the ΛCDM model. Note that in the representation of Fig-
ure 9, the area under the curve of the multiplicity function
(shaded) is proportional to the star formation rate density.
In each redshift panel, we also show the multiplicity function
of the mass distribution in bound halos at the corresponding
epoch. It is seen how the history of ρ̇?(z) arises by the inter-
play of two opposing trends. The gradual shift of the mass
multiplicity function towards higher mass scales leads to an
ever increasing fraction of mass bound in star-forming ha-
los with virial temperatures well above 104 K. On the other
hand, star formation in halos of a given mass becomes less
efficient with time because of the decline of the mean density
within halos as a result of cosmic expansion. Together, these
effects then produce a maximum of the star formation rate

at an intermediate epoch, with a fall-off from there towards
both low and high redshifts.

5 EVOLUTION OF THE COSMIC STAR

FORMATION RATE DENSITY

5.1 Numerical results

In Figure 10, we show the evolution of the cosmic star for-
mation rate per unit comoving volume, as directly measured
from all of our simulations. Interestingly, the collection of
runs appears to describe an “envelope”, which we tenta-
tively interpret as the result for a fully converged numerical
simulation with good sampling of the entire cosmological
mass function. Simulations of low mass-resolution eventu-
ally break away from this envelope towards high redshift.
The poorer the resolution, the lower the redshift at which
this occurs. This trend is consistent with our expectations
developed in Section 4, based on the joint analysis of the
multiplicity functions of star formation and mass.

Note, however, that a simulation may also underpredict
the cosmic star formation rate density at a given epoch when
its volume is too small to contain a fair sample of the high
end of the mass function. This is the case for the Z-series
at “low” redshifts of z < 15. At these epochs, the star for-
mation rate density is dominated by the rarest objects in
the exponential tail of the mass function, which the Z-series
does not properly sample, owing to insufficient volume.

It is now interesting to see whether the common enve-
lope traced out by the simulations is reproduced if we mul-
tiply our measurements for the average star formation in
halos of a given mass, s(M, z) =

〈

Ṁ?

〉

/M , with the Sheth
& Tormen multiplicity function, and integrate to obtain ρ̇?

using equation (11). The result we obtain from this proce-
dure is the bold line drawn in Figure 10. The good agree-
ment between this curve and the “envelope” from the indi-
vidual simulations indirectly shows that the Sheth & Tor-
men mass function provides an adequate description of the
halo abundance in our simulations. Only at very high red-
shift do the simulations fall slightly short of the expectation
from the analytic mass function. In this regime, the cosmic
mean of the star formation rate density is dominated by
very rare objects in the exponential tail of the mass func-
tion, making it difficult to obtain a representative sample
in a small simulation volume. It is also possible that the
Sheth & Tormen multiplicity function becomes less accu-
rate at these high redshifts, where it is largely untested. In
fact, if we use the Press & Schechter mass function to in-
tegrate the expected star formation density, we obtain the
result indicated by the dotted line in Figure 10, which lies
substantially below the Sheth & Tormen result at very high
redshift. At intermediate redshifts of around z ∼ 10, the
difference essentially vanishes, while at lower redshift, the
Press & Schechter result lies higher. This is consistent with
Jang-Condell & Hernquist (2001), who found that the halo
abundance measured in collisionless simulations at redshift
z = 10 matches the Press & Schechter prediction quite well.
Overall, the results in Figure 10 give us confidence that we
can identify our measurements of s(M, z) from our simu-
lations convolved with the Sheth & Tormen mass function
as the best estimate for the expected star formation rate
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Figure 10. Evolution of the comoving cosmic star formation rate density in all of our simulations on a common plot. Individual runs

are labelled at the bottom. It is seen that the collection of runs forms a common “envelope”, with each simulation of low mass-resolution
eventually breaking away from the envelope at sufficiently high redshift. A simulation may also underpredict the cosmic star formation

density when its volume is too small to resolve a fair sample of the high end of the mass spectrum of halos expected at the given epoch.

This is the case for the Z-series at “low” redshifts of z < 15. At these epochs, the star formation is dominated by the rarest massive
objects, of which the Z-series does not contain a proper number. Interestingly, the common envelope formed by the simulations is very

well reproduced if we multiply our measurement for the average star formation rate in halos of a given mass, s(M, z) =
〈

Ṁ?

〉

/M , with

the Sheth & Tormen mass function, and integrate the resulting multiplicity function to obtain ρ̇?(z). This result is shown as the bold
line, and may be viewed as our prediction for the star formation history, corrected for incomplete sampling of the halo mass function.

The dotted line shows the result of this computation if the Press & Schechter mass function is used instead at high redshift.

density in fully resolved simulations of essentially arbitrar-
ily large volume. In the remainder of our analysis we will
therefore adopt this composite result as the prediction of
our numerical simulations.

Interestingly, we have found that the composite simula-
tion result can be remarkably well-fitted by a double expo-
nential of the form

ρ̇?(z) = ρ̇m
β exp [α(z − zm)]

β − α + α exp [β(z − zm)]
, (14)

where α = 3/5, β = 14/15, zm = 5.4 marks a break redshift,
and ρ̇m = 0.15 M¯yr−1Mpc−3 fixes the overall normalisa-

tion. In Figure 11, we compare this fit to our measurement,
and find it to be accurate to within ' 15% in the range
0 ≤ z ≤ 20. We suspect that the variation of the parameter
values of the fitting function with cosmological parameters
can be understood in terms of simple scaling arguments, an
idea that we will pursue further elsewhere.

5.2 Comparison with observational measurements

In Figure 12, we compare a variety of direct observational
constraints of the cosmic star formation rate density with
our prediction. For this comparison, we have used a com-
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Figure 11. Cosmic star formation rate density of our compos-

ite simulation result (thick line) compared to the analytic fit
(thin line) given in equation (14). The accuracy of the double-
exponential fit is better than about 15% over the full redshift
range 0 ≤ z ≤ 20.

pilation of observational data put together by Somerville
et al. (2001), who have also computed corrections for in-
completeness, and for the ΛCDM cosmology if appropriate.
In addition, we have applied a uniform dust correction of
0.33 in the log to UV-data at high redshift. It should be
kept in mind that observing the cosmic star formation den-
sity is not only intrinsically challenging, but also involves
quite substantial corrections that make it difficult to assess
measurement uncertainty.

In our model, the star formation rate peaks in the red-
shift range z ∼ 5 − 6. This is substantially higher than the
peak at z ∼ 1 − 2 suggested by the early work of Madau
et al. (1996), a result which however was probably severely
affected by dust corrections unknown at the time. The newer
high-redshift points of Steidel et al. (1999) and Hughes et al.
(1998) actually appear to be consistent with our prediction.
Also, our simulations are in good agreement with data for
the Local Universe from Gallego et al. (1995) and Treyer
et al. (1998), but not Gronwall (1999).

However, if we assume that all the data points are un-
biased, our result seems low compared to the “average” at
redshifts around z ∼ 1. These high observational results at
z ∼ 1 suggest a very rapid decline of the star formation rate
towards the present epoch. For example, Hogg (2001) anal-
ysed the diverse set of available data from the literature and
estimates ρ̇? ∝ (1+z)β with β = 3.1±0.7. Such a steep evo-
lution was first suggested by Lilly et al. (1996), based on an
analysis of the Canada-France Redshift survey. Our model
prediction clearly evolves more slowly than this estimate.

On the other hand, the more gradual decline of star for-
mation found by us is in better agreement with the result
of Cowie et al. (1999). Recently, this group has been able
to substantially increase their observational sample of mul-
ticolour data and spectroscopic redshifts from the Hawaii
Survey Fields and the Hubble Deep Field, allowing a selec-
tion based on rest-frame UV up to a redshift of z = 1.5.
Wilson et al. (2002) confirm a shallow evolutionary rate of

(1 + z)1.7±1.0 over this redshift range from this new data.
We think our results for the star formation history are
broadly consistent with the data, given the current level of
uncertainty in the observational determinations. Note that
a proper treatment of metal-line cooling has the potential
to increase our star formation estimate at low redshift, as
discussed by Hernquist & Springel (2002). This could elim-
inate a potential deficit of star formation at low redshift in
our model if future observational improvements confirm this
suggestion of the present data.

It is also interesting to compare our prediction with
other theoretical studies of the cosmic star formation his-
tory. Baugh et al. (1998) have analysed the cosmic star for-
mation history using semi-analytic models. They find a rapid
decline of star formation at low redshift, with a peak occur-
ring around z ∼ 2, clearly quite different from the history
found here. Their result implies that 50% of the stars form
after z ' 1 in their low-density model, with very little star
formation occurring at high redshift. Fewer than 10% of the
stars are formed beyond redshift z > 3 according to their
picture. This tendency for the bulk of stars to be formed at
relatively low redshift is not found in our simulation result,
as we will discuss in more detail in Section 6.

Somerville et al. (2001) used a similar technique to pre-
dict the history of star formation from the present to a red-
shift of z = 6. They actually find a star formation history
resembling ours, but only for their “collisional starburst”
model. Their “constant efficiency quiescent” model appears
to predict at least an order of magnitude less star formation
for redshifts higher than 5 than found in our simulations.
This is quite curious. While our simulations are in prin-
ciple capable of following the triggering of intensified star
formation as a result of gas inflow in mergers, we doubt
we presently have sufficient numerical resolution to follow
this process faithfully, particularly at high redshift. It seems
more likely that our simulations have such high star forma-
tion rates because our intrinsic, “quiescent” mode of star
formation is very efficient at high redshift.

In the numerical simulation of Nagamine et al. (2001),
the cosmic star formation rate rises quickly from the present
epoch to about z ∼ 1, and then continues to increase mono-
tonically but slowly towards high redshift, staying nearly
constant between redshifts 2 and 7, the highest redshift for
which they cite results. The peak of the star formation rate
therefore appears to occur beyond redshift 7 in their model.
In earlier work by Nagamine et al. (2000), a peak at z ' 2
was observed, but they also showed in this study that this
first result was strongly dependent on numerical resolution
and had not converged yet; doubling the box size from 50
to 100 h−1Mpc and hence lowering the spatial resolution by
a factor of two also lowered the star formation density by
about a factor of two.

Ascasibar et al. (2002) also investigated the cosmic star
formation history by means of hydrodynamic mesh simu-
lations. In fact, they used a multi-phase model quite simi-
lar in spirit to the one employed here, although theirs dif-
fers substantially in the details of its formulation. Similar to
Nagamine et al. (2001), their ΛCDM models predict a nearly
constant star formation density over an extended redshift
range, but Ascasibar et al. (2002) find a peak at a low red-
shift of about z = 1.0 − 1.5, with a gradual decline towards
higher redshift.
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Figure 12. Cosmic star formation history for our composite simulation result (solid line) compared to data. Symbols mark various
observational results, here largely adopted from a recent compilation by Somerville et al. (2001), who also applied corrections for
incompleteness and converted to a ΛCDM cosmology, where appropriate. The data originate from Gallego et al. (1995, filled triangle),

Gronwall (1999, thin diagonal cross), Treyer et al. (1998, open triangle), Tresse & Maddox (1998, hollow circle), Lilly et al. (1996, filled

stars), Connolly et al. (1997, filled squares), Madau et al. (1998, filled circles), Pascarelle et al. (1998, empty squares), Flores et al. (1999,
empty stars), Cowie et al. (1996, filled diamonds), Hughes et al. (1998, filled hexagon), Steidel et al. (1999, hollow hexagons). Following

Somerville et al. (2001), we also applied a uniform dust correction factor of 0.33 in the log to the 1500 Angstrom UV-points at z > 2 of
Madau et al. (1998), Steidel et al. (1999) and Pascarelle et al. (1998). Note: In the published version of this figure, all observational data
points were erroneously drawn by a factor 1/h = 1.43 too high.

In both of these numerical studies, hydrodynamical
mesh-codes have been used which have severe difficulty in
resolving star-forming regions with the appropriate size and
density, despite the high accuracy these numerical tech-
niques have for the hydrodynamics of gas at moderate and
low overdensity. We suspect that this might make it rela-
tively difficult to achieve numerical convergence for the star
formation density using this approach. We expect our La-
grangian simulation technique to offer better behaviour in
this respect, although it can suffer from (different) numerical
limitations (e.g. Weinberg et al., 1999; Pearce et al., 2001;
Springel & Hernquist, 2002b), depending on details of its
implementation.

Finally, we comment on the behaviour of the cosmic
star formation rate density at the epoch of reionisation. In
our simulations, an externally imposed UV background ra-
diation of the form used by Davé et al. (1999) starts to
reionise the Universe at redshift z = 6. However, we do
not find the distinctive drop of the cosmic star formation
rate at the epoch of reionisation predicted by Barkana &
Loeb (2000). From Figure 9, we see that after the epoch of
reionisation, the UV background efficiently suppresses star
formation in halos of virial temperatures up to ∼ 5× 104 K,
but the halos in this mass range do not make a very signif-

icant contribution to the total star formation rate density.
At the epoch of reionisation at redshift z = 6, the bulk of
star formation has already shifted to higher mass scales, so
that photoionisation reduces the total star formation rate
by only 10-20%. For a higher reionisation redshift, we would
expect to see a stronger effect, however. Note that a num-
ber of semi-analytic studies of photoionisation “squelching”
of star formation in dwarf galaxies (Bullock et al., 2000,
2001; Barkana & Loeb, 2000; Somerville, 2002; Benson et al.,
2002a,b) have assumed a relatively strong depletion of the
gas fraction, and a corresponding reduction of the star for-
mation rate, in halos of virial temperatures of up to 105 K.
Our numerical results suggest that this effect may have been
overestimated in these studies.

5.3 The cosmic density in stars

An immediate corollary of our star formation history is the
total density of stars and stellar remnants we expect to have
formed by the present epoch. We find Ω? = 0.004 for this
quantity in units of the critical density, corresponding to
∼10% of all baryons being locked up in long-lived stars.
This is substantially lower than is typically found in hydro-
dynamic simulations that do not include strong feedback
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processes, and this low value brings us into better agree-
ment with observational estimates of Ω? based on the local
luminosity density.

Cole et al. (2001) used the 2dF and 2MASS catalogues
to constrain the K- and J-band luminosity functions. For
a ΛCDM cosmology, they find a total density in stars of
Ω? = (1.6 ± 0.24) × 10−3h−1 for a Kennicutt IMF, and
Ω? = (2.9 ± 0.43) × 10−3h−1 for a Salpeter IMF (see also
Balogh et al., 2001). Note that for the baryon density of
Ωb = 0.04 we adopted (motivated by constraints from big
bang nucleosynthesis), this means that only between 5-
12% of the baryons appear to be locked up in stars. Sim-
ilarly low values are found using optical data. For exam-
ple, Fukugita et al. (1998) estimated the global budget of
baryons in all states, based on a large variety of data, and
found Ω? = 2.45+1.7

−1.0×10−3h−1, corresponding to about 17%
of the sum of all baryons they were able to detect. This sum
amounted to Ωb = 0.021±0.007 in their study, falling some-
what short of current nucleosynthesis constraints. However,
this difference can be attributed to a state of baryons unac-
counted for in their study, the reservoir of warm-hot gas in
the IGM that is seen in simulations (Cen & Ostriker, 1999;
Davé et al., 2001), but which is difficult to detect in either
absorption or emission. This lowers the relative contribution
of stars in the baryon budget, leading to values in agreement
with the K-band results. Note that our simulation result of
Ω? = 2.8 × 10−3h−1 is consistent with these constraints.

6 WHEN AND WHERE STARS FORM

In this section, we examine the cumulative history of cosmic
star formation, as predicted by our composite simulation
result. This is shown in Figure 13, both as a function of
redshift and lookback time. Interestingly, already half the
stars have formed by redshift z ∼ 2.14 in our model, or
more than 10.4 Gyr ago, implying that most of the stars
at the present epoch should be quite old, with little recent
star formation. Only slightly more than 10% of all stars are
younger than 4 Gyr, and only about 25% of the stars form
at redshifts below 1.

Recently, Baldry et al. (2002) have constrained the star
formation history based on an averaged “cosmic spectrum”
of galaxies in the 2dF Galaxy Redshift Survey. They argue
that one can put upper limits on the star formation rate at
redshifts higher than z > 1, requiring that at most 80% of
all stars formed at redshifts z > 1. Our result satisfies this
constraint, but not by a wide margin.

The fact that stars should be relatively old at the
present time according to our model becomes clear when
we explicitly measure the mean stellar age versus redshift.
This is shown in Figure 14. Early on, the young age of the
Universe and the high rate of star formation together guar-
antee that the global stellar population is quite young, with
a mean age below 1Gyr. However, due to the rapid decline
of star formation at low redshift, the mean age eventually
starts to grow nearly in proportion to the age of the Universe
itself, reaching a value of about 9 Gyr by redshift z = 0. This
is substantially larger than what was reported by Nagamine
et al. (2001), highlighting that our star formation history is
considerably “older” than suggested by most previous nu-
merical or semi-analytic work. There are large observational
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Figure 13. Cumulative star formation as a function of lookback

time (top), or redshift (bottom). In both panels, we plot the frac-

tion of stars that have formed by a given lookback time or red-
shift, respectively, with the broken lines indicating 10%, 50%, and

90% percentiles. The arrow marks an upper limit by Baldry et al.
(2002) for the relative fraction of stars that may at most have

formed in the redshift range z > 1. We provide a tabulated form

of the data in this figure in Table 2.

uncertainties in determining the age distribution of stellar
populations, so it is unclear whether this quantity is very
constraining for the models. It seems clear, however, that
our model should have no difficulty in accommodating the
claimed old ages of the stellar populations in most elliptical
galaxies, despite the bona-fide hierarchical formation of all
galaxies in the simulations.

Another interesting question one may ask is where do
most of the stars form? By “where”, we refer to the mass-
scale of the halos that hosted the star formation. Formally,
this distribution is given by integrating the multiplicity func-
tion S(M, z) defined by equation (12) over time:
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Figure 14. Mean (solid) and median (dashed) ages of stars that
have formed up to a certain epoch z. The dotted line shows the age
of the universe as a function of redshift. For redshifts higher than

z ' 2.5, the global stellar population is quite young, with a mean
age below 1 Gyr. However, after this epoch, the mean age nearly
increases as rapidly as the age of the Universe itself, because

the star formation rate density is rapidly declining towards low
redshift. As a result, the mean age of all stars is about 9 Gyr at
the present epoch.

Q(M) =

∫

s(M, z) g(M, z) dt. (15)

In Figure 15, we show the resulting distribution of all star
formation with respect to halo mass. The distribution is
quite broad, with about an equal mass in stars being formed
per decade of halo mass in the range 1010 − 1013.5 h−1M¯,
with a peak at about 1012.5 h−1M¯. Note, however, that this
does not imply that the stars are distributed over halos in
this way at the present day. Most of them will not live in the
halo they originally formed in, either because their parent
halo was incorporated into a more massive halo by merging,
or because the halo simply grew in mass through accretion.

From the cumulative form of this distribution function
(also shown in Figure 15), we infer the fraction of stars that
were born in halos less massive than a given threshold value.
This quantity enables us to assess how much of the star for-
mation might have been missed by a simulation of a given
mass resolution that has been run to redshift z = 0. For
example, consider our ‘G3’ run, the lowest-resolution sim-
ulation of the G-Series, which employed 2 × 1443 particles
in a 100 h−1Mpc box. Assuming that at least 100 SPH and
dark matter particles per halo are necessary to obtain a
converged result for the star formation in the mean (this
is optimistic), then all the star formation in halos below a
mass of ∼ 2.8 × 1012 h−1M¯, amounting to 65% of the to-
tal, will either have been lost completely, or will have been
computed unreliably.
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Figure 15. Distribution of the integrated star formation history
with respect to halo mass (shaded). This function is the time in-
tegral of the multiplicity function of star formation and shows

which mass scales are the dominant formation sites of stars. In-
terestingly, the distribution is quite broad, showing that nearly
the same mass in stars forms per decade of halo mass in the range

1010 − 1013.5 h−1M¯, with a slight peak at ∼ 1012.5 h−1M¯. We
also include a plot of the cumulative function of this distribu-
tion (right scale). Roughly half of the stars are predicted to have
formed in halos less massive than 1011.5 h−1M¯.

Fraction z T [Gyr]

0.1 5.98 12.55

0.2 4.53 12.17
0.3 3.56 11.73

0.4 2.80 11.19
0.5 2.14 10.44
0.6 1.58 9.45

0.7 1.08 8.03
0.8 0.67 6.12

0.9 0.31 3.48

Table 2. Cumulative star formation history as a function of look-
back time T and redshift z. This data corresponds to the plots

shown in Figure 13.

7 EARLY STAR FORMATION AS POSSIBLE

SOURCE FOR HYDROGEN REIONISATION

There are both observational and theoretical indications
that at least some of the ionising background at high redshift
comes from stars and that it is not all produced by quasars
(e.g. Steidel et al., 2001; Haehnelt et al., 2001; Hui et al.,
2002). This is a long debate. At low redshift, it seems clear
that quasars dominate, while at high redshift, the space den-
sity of bright quasars appears to drop so rapidly that it is
difficult to see how they could reionise the Universe already
by redshift z ∼ 6. Hence, it has been speculated extensively
that hydrogen was mostly reionised by stars, or possibly
harder sources like weak AGN or mini-quasars. Recently,
the first determinations of the spectrum of Lyman-break
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Figure 16. Clumping factor of the gas in the simulations of the
Z-Series as a function of redshift. We show results for Z1, Z2,
Z3, and Z4. The clumping factor was estimated for all the gas by
means of equation (20).

galaxies at redshifts 〈z〉 = 3.4 by Steidel et al. (2001) have
revealed a surprisingly high escape fraction for hydrogen ion-
ising photons, supporting scenarios where the star forming
galaxies reionise hydrogen around redshift z ∼ 6, with quasi-
stellar sources taking over only at redshifts z < 3 (Haehnelt
et al., 2001). This general picture is consistent with the anal-
ysis of Sokasian et al. (2002b) who have constrained the
spectral shape of the UV background at z ∼ 2.5 − 5 from
the opacities of the HI and HeII Lyman-alpha forests, at
an epoch when HeII reionisation is likely to have occurred
(Sokasian et al., 2002a).

Here, we roughly estimate whether the star formation
rates predicted at high redshift in our model could be re-
sponsible for the reionisation of hydrogen by redshift z ∼ 6.
The fact that we infer a star formation rate that peaks
around this redshift is certainly intriguing, although this
may just be a coincidence.

The reionisation of the universe can be described in a
statistical sense by noting that every ionising photon that
is emitted is either absorbed by a newly ionised hydrogen
atom, or by a recombining one (Madau, 2000). The filling
factor Q(t) of regions of ionised hydrogen is then simply
given by the total number of ionising photons emitted per
hydrogen atom at earlier times than t, minus the total num-
ber of recombinations per atom. Based on this argument,
Madau et al. (1999) derived a simple differential equation
that governs the transition from a neutral universe to a fully
ionised one:

dQ

dt
=

ṅion

nH

− Q(t)

trec
. (16)

Here ṅion is the comoving emission rate of hydrogen ionis-
ing photons, nH is the average comoving density of hydrogen
atoms, and trec is the volume averaged hydrogen recombi-
nation time. The latter can be expressed as:
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Figure 17. Filling factor of ionised hydrogen as a function of
redshift when the star-forming galaxies are assumed to be the
only ionising sources. Results are shown for the different escape
fractions of 10%, 50%, and 100%. Interestingly, the star formation

history at high redshift might be sufficient to ionise hydrogen even
without the proposed population III generation of stars, but only

for high escape fractions close to unity.

trec =
1

(1 + z)3(1 + 2χ) nH αB C
, (17)

where

C ≡
〈

n2
H+

〉

〈nH+〉2
(18)

is the clumping factor of ionised hydrogen, χ is the helium
to hydrogen abundance ratio, and αB is the recombination
coefficient. Assuming a gas temperature of 104 K, the recom-
bination time can be written as (Madau et al., 1999):

trec = 588
a3

C(a)
Gyr. (19)

We will approximate C with the clumping factor of all the
gas, measured directly from the simulations. This will tend
to overestimate the clumping slightly, since higher density
regions will typically tend to be less ionised. On the other
hand, measurements from the simulations are expected to
be biased low due to their intrinsic resolution limit.

For the Lagrangian SPH simulations, we can estimate
the clumping factor conveniently from

C =

∑

i
miρ

−1
i

∑

j
mjρj

(
∑

k
mk

)2
. (20)

In Figure 16, we show the clumping factors measured in this
way for the four simulations Z1-Z4. As expected, for higher
mass resolution, there is a tendency to detect an earlier in-
crease of the clumping due to the first structures that form,
but overall there is gratifying agreement between the sim-
ulations, especially in the most interesting redshift regime
of z ' 6 − 10. Note that our measured clumping values are
also in good agreement with the semi-analytic prediction of
Benson et al. (2001).
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Madau et al. (1999) estimate that approximately 1053

ionising photons per second are released by every star form-
ing region with a star formation rate of 1 M¯ yr−1. A large
uncertainty is to what extent these photons are able to es-
cape a galaxy without being absorbed in the star-forming
ISM itself. The escape fraction fesc has been estimated to
be quite small at low redshift (e.g. Leitherer et al., 1995),
but recent results by Steidel et al. (2001) suggest that it
may actually have been quite high in Lyman-break galaxies
at high redshift. If these results are confirmed, it could well
be above 50% at these redshifts. We model the emission rate
as

ṅion = fesc η ρ̇?, (21)

where η = 1053 phot s−1 M−1
¯ yr.

For a given value of the escape fraction, the measured
evolution of the star formation history and of the clump-
ing factor in the simulations can be used to integrate equa-
tion (16) in time. In Figure 17, we show our results for escape
fractions of 10%, 50%, and 100%. It is rather interesting to
note that for the latter case, we obtain a reionisation red-
shift of z ' 8. However, this result is quite sensitive to the
assumed escape fraction. Lowering the number of available
photons by a factor of 2 will already delay the reionisation
redshift to z ' 4, while an escape fraction as low as 10%
together with the strong clumping that develops at low red-
shift will prevent hydrogen ionisation by stars altogether. By
the same token, the result is sensitive to the assumed IMF
because the latter influences the production rate of ionising
photons. For a Salpeter IMF, Hui et al. (2002) actually es-
timate η = 1.5 × 1053 phot s−1 M−1

¯ yr, which is 50% higher
than the value we adopted in our estimate and would thus
give more room for lower escape fractions.

It thus appears that hydrogen reionisation by stars at
redshifts around z ∼ 6 is plausible with a cosmic star forma-
tion history as predicted here. It requires, however, a high
escape fraction. Further observational determinations of the
escape fractions, and theoretical studies of radiative transfer
in the star forming regions, are clearly needed to shine more
light on this important issue. In particular, a quantitative
estimate of the escape fraction in a galaxy experiencing a
strong wind is desirable, as the sweeping of gas in galaxy
halos by these winds should enable high energy photons
to escape more easily. Promising attempts to include self-
consistent treatments of radiative transfer directly in sim-
ulations have already been made (e.g. Gnedin & Ostriker,
1997; Ciardi et al., 2001, 2002; Sokasian et al., 2001), and
the recent progress in developing better algorithmic treat-
ments of radiative transfer (e.g. Gnedin & Abel, 2001; Abel
& Wandelt, 2002; Cen, 2002) will soon improve the reliabil-
ity of these computations.

8 DISCUSSION

We have studied the star formation history of the Universe
using cosmological SPH simulations that employ a sophisti-
cated treatment of star formation, supernova feedback, and
galactic outflows. Using present day computational capa-
bilities, we have been able to show that this model yields
numerically converged results for halos of all relevant mass
scales, assuming that the vast majority of stars can form

only in halos in which gas can condense by atomic line cool-
ing. Using a large set of high-resolution simulations on in-
terlocking scales and at interlocking redshifts, we have been
able to determine the multiplicity function of cosmic star
formation and infer its evolution from high redshift to the
present. We think that the numerical methodology used here
represents perhaps the most comprehensive attempt thus far
to constrain the cosmic star formation history in the ΛCDM
cosmogony with simulations.

Interestingly, our predicted star formation density
peaks early, already at redshifts around z ∼ 5− 6, and then
falls to the present time by a factor of about 10. The decline
at low redshift is hence shallower than suggested by a sub-
set of observational results, and our star formation rate also
appears low at redshifts around z ∼ 1 compared to some of
the data. However, there is very large scatter between dif-
ferent observations, which are partly inconsistent with each
other, emphasising the challenges posed by these measure-
ments. Our result matches a number of the observational
points, and does so particularly well at very low and very
high redshift. We thus conclude that at present our results
are consistent with direct data on the star formation rate
density as a function of epoch. It will be very interesting to
see whether this will remain true when observational uncer-
tainty is reduced in the future.

One consequence of the star formation history we pre-
dict is that the majority of stars at the present should be
quite old, despite the hierarchical formation of galaxies. Al-
ready 10.4 Gyr ago, by redshift z = 2.14, half of the stars
should have formed, with only ∼ 25% forming at redshifts
below unity. The mean stellar age at z = 0 predicted by our
model is 9 Gyr.

Integrated over cosmic time, star formation occurs
predominantly in halos with masses between 108 h−1M¯

and 1014 h−1M¯, with 50% forming in halos below
1011.5 h−1M¯. It is thus clear that simulations of galaxy for-
mation need to be able to resolve at least these mass scales
well in order to have a chance at giving a reasonably accu-
rate accounting of the formation of the luminous component
of the Universe.

The total integrated star formation rate predicts a den-
sity in stars of about Ω? = 0.004, or expressed differently,
10% of all baryons should have been turned into long-lived
stars by the present. This is in comfortable agreement with
recent determinations of the luminosity density of the Uni-
verse, while earlier theoretical work was typically predicting
substantially larger numbers of stars, by up to a factor of
three or so. Our model hence appears to have resolved the
so-called “over-cooling crisis”. This was primarily made pos-
sible by the strong feedback we adopted in our simulations
in the form of galactic winds.

We note that our predictions do depend on the model
for star formation and feedback we adopted. In particular,
without the inclusion of galactic outflows, which have been
introduced on a phenomenological basis in our approach,
star formation in the low redshift universe would clearly
have been higher. Our strategy has been to normalise the
free parameters in our star formation law (the consumption
timescale of cold gas) to observations of local disk galax-
ies, and to select the parameters for the galactic winds as
suggested by observations. Under the assumption that the
same laws hold roughly at all redshifts, we have then com-
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puted what simulations predict for the ΛCDM model. In this
context, one should clearly distinguish between the compu-
tational difficulty of the problem on one hand, and the un-
certainty and complexity of the modeling of the physics on
the other. We think that we have been able to make great
progress on the computational side of the problem, but we
are aware that large uncertainties remain in our handling of
star formation and feedback. It is possible that the model-
ing of the physics we adopted could be incomplete in crucial
respects.

Perhaps one of the most important effects that has been
neglected in our simulations is metal line cooling. It is well
known that metals can substantially boost cooling rates,
and hence can potentially have a very prominent effect on
the rates at which gas becomes available for star formation
(White & Frenk, 1991). However, the extent to which metal
enrichment can enhance gas cooling is strongly dependent on
how efficiently metals can be dispersed and mixed into gas
that has yet to cool for the first time. In simulations without
galactic winds, we find that metals are largely confined to
the star-forming ISM at high overdensity. Metal-line cooling
would not significantly increase the star formation rates in
these simulations. In the present set of simulations, metals
can be transported by winds into the low-density IGM. If
the corresponding gas is reaccreted at later times into larger
systems, metal-line cooling should then accelerate cooling,
thereby potentially increasing the total star formation den-
sity compared to what we estimated here, particularly at
low redshift. But recall that metal line cooling has also been
neglected when we normalised the star formation timescale
used in our model for the ISM to match the Kennicutt law.
If we had included metal line cooling, this normalisation
would have been somewhat different in order to compen-
sate for the accelerated cooling, such that the net star for-
mation rate would have again matched the Kennicutt law.
This effect will alleviate any difference that one naively ex-
pects from the inclusion of metal line cooling. More work is
therefore needed to quantitatively estimate how important
the effect of metal line cooling would ultimately be in the
present model of feedback due to galactic winds.

The set of simulations we carried out offers rich infor-
mation on many aspects of galaxy formation and structure
formation, not only on the cosmic star formation history.
Note in particular that our simulations are among the first
that can self-consistently address the interaction of winds
with the low-density IGM, and the transport of heavy met-
als along with them. We have already investigated effects
of the winds on secondary anisotropies of the cosmic mi-
crowave background (White et al., 2002). Among the issues
we plan to address next, is the question of whether winds
imprint specific signatures in the Lyman-α forest that can
be identified observationally..
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