

The origin of NFW

Simon White Max Planck Institute for Astrophysics

Fiat Lux, Castel Gandolfo, June 2023

Inverted NFW, the search for an explanation?

Self-similar halo growth

Consider a power-law ellipsoidal linear density perturbation within an otherwise uniform EdS universe:

$$\delta(\mathbf{x}, t) = (t/t_0)^{2/3} (\mathbf{x} \cdot A \cdot \mathbf{x})^{-\alpha/2}, \quad |A| = 1$$
$$= (t/t_0)^{2/3} M(\mathbf{x})^{-\alpha/3}$$

The halo mass thus increases as:

$$M_{\rm halo}(t) \propto t^{2/\alpha}$$

Within the halo: $\rho \propto r^{-\gamma} \longrightarrow t_{\rm orb} \propto r^{\gamma/2}$, $M \propto r^{3-\gamma} \longrightarrow M \propto t_{\rm orb}^{(6-2\gamma)/\gamma}$

If
$$M(t_{\rm orb}) \propto M_{\rm halo}(t=t_{\rm orb})$$
,
then $2/\alpha = (6-2\gamma)/\gamma$
 $\gamma = 3\alpha/(1+\alpha)$

This is *not* NFW-like, but rather a power law with γ depending on α

In Λ CDM halos γ declines with radius

The shape of Λ CDM density profiles is independent of mass, e.g. relative to M_*

No dependence on linear power spectrum slope, see also halos in $P \propto k^n$ cosmologies

The connection to halo assembly

The mean profiles of Λ CDM halos *are* tightly linked to their mean growth histories

Violent relaxation is weak

A "universal" growth history shape

The connection to halo assembly

The mean profiles of Λ CDM halos *are* tightly linked to their mean growth histories

Violent relaxation is weak

A "universal" growth history shape

Convergent evolution?

Profile c reflects MAH c nearly linearly, but profiles are closer to NFW than MAH's: convergence driven by weak violent relaxation

Halos converge to NFW outside $r_{Power}(t_f)$

The NFW shape is not a consequence of 2-body relaxation/discreteness

Prompt cusp formation in a ACDM density peak

$$t_c \longrightarrow z = 87$$

$$t_c \longrightarrow z = 87$$

$$M_{pk} \sim 10^{-6} M_{\text{sun}}$$

Prompt cusp formation in a ACDM density peak

$$t_c \longrightarrow z = 87$$

$$M_{pk} \sim 10^{-6} M_{\rm sun}$$

Prompt cusp formation differs qualitatively from "normal" halo formation

Violent relaxation is important

No close link of profile to cusp growth history

A "universal" profile *different* from NFW

Prompt cusp and subsequent halo growth for a peak with $z_{coll} = 87$

Excursion set calculation of halo mass growth

Let $p(M_1, z_1 | M_0, z_0)dM_1$ be the distribution of progenitor halo mass M_1 at z_1 for individual mass elements which are part of a halo of mass M_0 at z_0 . Then

$$dN = \frac{M_0}{M_1} p(M_1, z_1 | M_0, z_o) dM_1$$

is the number distribution of progenitors by mass. For Poisson sampling from this distribution, the mean mass of the most massive progenitor would be given by

$$\langle M_{\text{halo}} \rangle (z_1 | M_0, z_0) = \int_{M_1=0}^{M_0} dN M_1 \exp\left(-\int_{M_1}^{M_0} dN\right).$$

For an EdS universe with $P(k) \propto k^n$, $\sigma^2(M) \propto M^{-(3+n)/3}$, w.l.o.g. $z_0 = 0$, and

$$\langle M_{\rm halo} \rangle / M_0 = \sqrt{\frac{2}{\pi}} \int_0^\infty dZ \, \exp\left(-Z^2/2 - \sqrt{\frac{2}{\pi}} \int_Z^\infty dZ' \left(\frac{A^2 + Z'^2}{Z'^2}\right)^{3/(3+n)} \exp\left(-Z'^2/2\right)\right)$$

for a sharp-
$$k$$
 filter, where $A = \left(\frac{M_0}{M_*}\right)^{(3+n)/6} z_1$, $\sigma(M_*) = \delta_c = 1.686$

Excursion set calculation of halo mass growth

Let $p(M_1, z_1 | M_0, z_0)dM_1$ be the distribution of progenitor halo mass M_1 at z_1 for individual mass elements which are part of a halo of mass M_0 at z_0 . Then

$$dN = \frac{M_0}{M_1} p(M_1, z_1 | M_0, z_o) dM_1$$

is the number distribution of progenitors by mass. The mean mass of the most massive progenitor is thus given by

$$\langle M_{\text{halo}} \rangle (z_1 | M_0, z_0) = \int_{M_1=0}^{M_0} dN M_1 \exp\left(-\int_{M_1}^{M_0} dN\right).$$

For an EdS universe with $P(k) \propto k^n$, $\sigma^2(M) \propto M^{-(3+n)/3}$, w.l.o.g. $z_0 = 0$, and

$$M_{\text{halo}} M_0 = \sqrt{\frac{2}{\pi}} \int_0^\infty dZ \exp\left(-\frac{Z^2}{2}\right)^2 \int_0^\infty dZ \left(\frac{A^2 + Z^2}{2}\right)^{3/(3+n)} \exp\left(-\frac{Z^2}{2}\right)^2 \int_0^\infty dZ \exp\left(-\frac{Z^2}{2}\right)^{3/(3+n)} \exp\left(-\frac{Z^2}{2}\right)^2 \int_0^\infty dZ \exp\left(-\frac{Z^2}{2}\right)^{3/(3+n)} \exp\left(-\frac{Z^2}{2}\right)^{3/(3+n$$

- NFW shape does not depend on power spectrum slope or cosmology
- It does not depend on mass (e.g. relative to M_*)
- It is not a consequence of discreteness/2-body relaxation
- Violent relaxation smooths profiles but does not mix radially

- NFW shape does not depend on power spectrum slope or cosmology
- It does not depend on mass (e.g. relative to M_*)
- It is not a consequence of discreteness/2-body relaxation
- Violent relaxation smooths profiles but does not mix radially
- Monolithic self-similar collapse produces power laws without violent relaxation and with $t_{\rm orb} \propto t_{\rm inf}$
- Peak collapse produces a universal but non-NFW profile and involves strong violent relaxation, $t_{\rm orb} \neq t_{\rm inf}$

- NFW shape does not depend on power spectrum slope or cosmology
- It does not depend on mass (e.g. relative to M_*)
- It is not a consequence of discreteness/2-body relaxation
- Violent relaxation smooths profiles but does not mix radially
- Monolithic self-similar collapse produces power laws without violent relaxation and with $t_{\rm orb} \propto t_{\rm inf}$
- Peak collapse produces a universal but non-NFW profile and involves strong violent relaxation, $t_{\rm orb} \neq t_{\rm inf}$
- Profiles of "normal" halos *are* tightly related to their growth histories which also have a universal shape: again $t_{\rm orb} \propto t_{\rm inf}$

- NFW shape does not depend on power spectrum slope or cosmology
- It does not depend on mass (e.g. relative to M_*)
- It is not a consequence of discreteness/2-body relaxation
- Violent relaxation smooths profiles but does not mix radially
- Monolithic self-similar collapse produces power laws without violent relaxation and with $t_{\rm orb} \propto t_{\rm inf}$
- Peak collapse produces a universal but non-NFW profile and involves strong violent relaxation, $t_{\rm orb} \neq t_{\rm inf}$
- Profiles of "normal" halos *are* tightly related to their growth histories which also have a universal shape: again $t_{\rm orb} \propto t_{\rm inf}$

The universal NFW shape is a consequence of convergent evolution + near-universal hierarchical growth histories from gaussian I.C.'s

Thanks for the ride, Don Julio