Interpretable machine learning?

Discovering the building blocks of dark matter halo density profiles with neural networks
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4 Empirical representation

Disentanglement
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NFWO96 1nsights into z=0 halo density profiles

I. Spherically averaged halo density profiles within R200 can be fit
over the resolved radial range to within the noise due to substructure
and counting statistics by a smooth function of just two variables.

II. Profiles are homologous: they can be fit by a "universal" curve,
with the two parameters corresponding to a characteristic radius and a
characteristic density, hence to offsets of the universal curve parallel
to the x- and y-axes in a log-log plot.

III. The characteristic densities and radii are correlated: bigger halos
are less dense.
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“Failure” 1s, 1n part, a consequence of the disentanglement requirement
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