Cosmology with Large-scale Structure of the Universe

Eiichiro Komatsu (Texas Cosmology Center, UT Austin) Korean Young Cosmologists Workshop, June 27, 2011

Cosmology Update: WMAP 7-year+

• Standard Model

- H&He = 4.58% (±0.16%)
- Dark Matter = 22.9% (±1.5%)
- Dark Energy = 72.5% (±1.6%)
- H₀=70.2±1.4 km/s/Mpc
- Age of the Universe = 13.76 billion years (±0.11 billion years)

Universal Stats

Age of the universe today 13.75 billion years

Age of the cosmos at time of reionization 457 million years

"ScienceNews" article on the WMAP 7-year results

Cosmology: Next Decade?

- Astro2010: Astronomy & Astrophysics Decadal Survey
 - Report from Cosmology and Fundamental Physics Panel (Panel Report, Page T-3):

TABLE I Summary of Science Frontiers Panels' Findings

Panel

Cosmology and	CFP 1	Н
Fundamental Physics	CFP 2	v

- CFP 3 What Is Dark Matter?
- CFP 4 What Are the Properties of Neutrinos?

Science Questions

- Iow Did the Universe Begin?
- Why Is the Universe Accelerating?

Cosmology: Next Decade?

- Astro2010:Astronomy & Astrophysics Decadal Survey
 - Report from Cosmology and Fundamental Physics Panel (Panel Report, Page T-3): Translation

TABLE I Summary of Science Frontiers Panels' Findings

Panel

Cosmology and	CFP 1	Η
Fundamental Physics	CFP 2	v

- Dark Matter What Is Dark Matter? CFP 3
- What Are the Properties of N Neutrino Mass CFP 4

Science Questions

- Iow Did the Universe Begin Inflation
- Why Is the Universe Acceler: Dark Energy

Cosmology: Next Decade?

Large-scale structure of the universe has a potential to give us valuable information on all of these items.

Cosmology and	CFP 1	Н
Fundamental Physics	CFP 2	v

T GILFT

- **GED 3** 11
- CFP 3 W
- CFP 4 W

How Did the Universe Begin Inflation Why Is the Universe Acceler Dark Energy What Is Dark Matter? Dark Matter

Selence Questions

What Are the Properties of N Neutrino Mass

What to measure? Inflation

- Shape of the initial power spectrum $(n_s; dn_s/dlnk; etc)$
- Non-Gaussianity (3pt f_{NL}^{local}; 4pt T_{NL}^{local}; etc)

• Dark Energy

- Angular diameter distances over a wide redshift range • Hubble expansion rates over a wide redshift range
- Growth of linear density fluctuations over a wide redshift range
- Shape of the matter power spectrum (modified grav)

What to measure?

Neutrino Mass

• Shape of the matter power spectrum

• Dark Matter

- Shape of the matter power spectrum (warm/hot DM)
- Large-scale structure traced by Y-ray photons

Shape of the Power Spectrum, P(k)

Current Limit on ns

- Limit on the tilt of the power spectrum:
 - $n_s = 0.968 \pm 0.012$ (68%CL; Komatsu et al. 2011)
 - Precision is dominated by the WMAP 7-year data
- Planck's CMB data are expected to improve the error bar by a factor of ~4.

Probing Inflation (2-point Function)

 $r = (gravitational waves)^2 / (gravitational potential)^2$

- Joint constraint on the primordial tilt, n_s, and the tensor-to-scalar ratio, r.
 - Not so different from the 5-year limit.
 - r < 0.24 (95%CL)
- Limit on the tilt of the power spectrum: n_s=0.968±0.012 (68%CL)

Role of the Large-scale Structure of the Universe

- However, CMB data can't go much beyond k=0.2 Mpc⁻¹ (**I**=3000).
 - Large-scale structure data are required to go to smaller scales.

Shape of the Power Spectrum, P(k)

Measuring a scaledependence of n_s(k) • As far as the value of n_s is concerned, CMB is probably

- enough.
- However, if we want to measure the scale-dependence of n_s , i.e., deviation of $P_{prim}(k)$ from a pure power-law, then we need the small-scale data.
 - This is where the large-scale structure data become quite powerful (Takada, Komatsu & Futamase 2006)
- Schematically:
 - $dn_s/dlnk = [n_s(CMB) n_s(LSS)]/(lnk_{CMB} lnk_{LSS})$

Probing Inflation (3-point Function)

Can We Rule Out Inflation?

- Inflation models predict that primordial fluctuations are very close to Gaussian.
 - In fact, ALL SINGLE-FIELD models predict a particular form of **3-point function** to have the amplitude of $f_{NL}^{local} = 0.02$.
 - Detection of $f_{NL} > I$ would rule out ALL single-field models!

Bispectrum

• Three-point function!

• $B_{\zeta}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)$ $= \langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle = (\text{amplitude}) \times (2\pi)^3 \delta(k_1 + k_2 + k_3) F(k_1, k_2, k_3)$

Primordial fluctuation

model-dependent function

MOST IMPORTANT

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004) Single-field Theorem (Consistency Relation)

- For **ANY** single-field models^{*}, the bispectrum in the squeezed limit is given by
 - $B_{\zeta}(\mathbf{k}_1 \sim \mathbf{k}_2 < < \mathbf{k}_3) \approx (1 n_s) \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$
 - Therefore, all single-field models predict $f_{NL} \approx (5/12)(1-n_s)$.
 - With the current limit $n_s=0.968$, f_{NL} is predicted to be 0.01.

* for which the single field is solely responsible for driving inflation and generating observed fluctuations.

19

Komatsu et al. (2011) Probing Inflation (3-point Function)

- No detection of 3-point functions of primordial curvature perturbations. The 95% CL limit is:
 - $-10 < f_{NI} > 0 < 74$
- The 68% CL limit: $f_{NL}^{local} = 32 \pm 21$
 - The WMAP data are consistent with the prediction of simple single-field inflation models: $I - n_s \approx r \approx f_{NL}$
- The Planck's expected 68% CL uncertainty: $\Delta f_{NL}^{local} = 5$

Trispectrum

• $T_{\zeta}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4})=(2\pi)^{3}\delta(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}) \{ g_{NL}[(54/25) P_{\zeta}(\mathbf{k}_{1})P_{\zeta}(\mathbf{k}_{2})P_{\zeta}(\mathbf{k}_{3})+cyc.] +T_{NL}[P_{\zeta}(\mathbf{k}_{1})P_{\zeta}(\mathbf{k}_{2})(P_{\zeta}(\mathbf{k}_{2})P_{\zeta}(\mathbf{k}_{3})+cyc.] \}$

TNL^{local}_f_{NL}^{local} Diagram In(T_{NL}) $au_{ m NL} \ge \left(rac{6f_{ m NL}^{ m local}}{5} ight)^2 \mathbf{X0.5}$ 3.3×10⁴ (Smidt et al. 2010) field models. ı(f_{NL}) 74

- The current limits from WMAP 7-year are consistent with single-field or multi-
- So, let's play around with the future.

No detection of anything after Planck. Single-field survived the test (for the moment: the future galaxy surveys can improve the limits by a factor of ten).

- f_{NL} is detected. Singlefield is dead.
- But, T_{NL} is also detected, in accordance with multifield models: T_{NL}>0.5 $(6f_{NL}/5)^2$ [Sugiyama, Komatsu & Futamase (2011)]

Case C: Madness

- f_{NL} is detected. Singlefield is dead.
- But, T_{NL} is **not** detected, inconsistent
 with the multi-field
 bound.
- (With the caveat that this bound may not be completely general)
 BOTH the single-field and multi-field are gone.

Beyond CMB: Large-scale Structure!

• In principle, the large-scale structure of the universe offers a lot more statistical power, because we can get 3D information. (CMB is 2D, so the number of Fourier modes is limited.)

Beyond CMB: Large-scale Structure?

- Statistics is great, but the large-scale structure is nonlinear, so perhaps it is less clean?
 - Not necessarily.

MOST IMPORTANT

Non-linear Gravity

Non-linear Galaxy Bias

• There is no F₂: less suppression at the squeezed, and less enhancement along the elongated triangles.

.4

.2

Still peaks at the equilateral or elongated forms. ³⁰

Primordial Non-Gaussianity

astrophysical effects.

Sefusatti & Komatsu (2007); Jeong & Komatsu (2010)

Bispectrum is powerful

- f_{NL}^{local} ~ O(I) is quite possible with the bispectrum method. (See Donghui Jeong's talk)
- This needs to be demonstrated by the real data! (e.g., SDSS-LRG)

Need For Dark "Energy"

- First of all, DE does not even need to be an energy.
- At present, anything that can explain the observed (1) Luminosity Distances (Type la supernovae) (2) Angular Diameter Distances (BAO, CMB)

simultaneously is qualified for being called "Dark Energy."

- The candidates in the literature include: (a) energy, (b) modified gravity, and (c) extreme inhomogeneity.
- Measurements of the (3) growth of structure break degeneracy. (The best data right now is the X-ray clusters.)

H(z): Current Knowledge

- $H^{2}(z) = H^{2}(0)[\Omega_{r}(|+z)^{4} + \Omega_{m}(|+z)^{3} + \Omega_{k}(|+z)^{2} + \Omega_{de}(|+z)^{3(|+w)}]$
 - (expansion rate) $H(0) = 70.2 \pm 1.4 \text{ km/s/Mpc}$
 - (radiation) $\Omega_r = (8.4 \pm 0.3) \times 10^{-5}$
 - (matter) $\Omega_{\rm m} = 0.275 \pm 0.016$
 - (curvature) $\Omega_k < 0.008$ (95%CL)
 - (dark energy) $\Omega_{de} = 0.725 \pm 0.015$
 - (DE equation of state) $w = -1.00 \pm 0.06$

WMAP7+

H(z) to Distances

- Comoving Distance
 - $\chi(z) = c \int z [dz'/H(z')]$
- Luminosity Distance
 - $D_{L}(z) = (1+z)\chi(z)[1-(k/6)\chi^{2}(z)/R^{2}+...]$
 - R=(curvature radius of the universe); k=(sign of curvature)
 - WMAP 7-year limit: $R > 2\chi(\infty)$; justify the Taylor expansion
- Angular Diameter Distance
 - $D_A(z) = [\chi(z)/(1+z)][1-(k/6)\chi^2(z)/R^2+...]$

35

What can we use as the standard ruler?

36

• If we know the intrinsic physical sizes, d, we can measure D_A. What determines d?

CMB as a Standard Ruler

θ ~the typical size of hot/cold spots

Sound Horizon

- The typical spot size, dcmb, is determined by the physical distance traveled by the sound wave from the Big Bang to the decoupling of photons at ZCMB~1090 (t_{CMB}~380,000 years).
- The causal horizon (photon horizon) at t_{CMB} is given by
 - $d_H(t_{CMB}) = a(t_{CMB})^*$ Integrate [$c dt/a(t), \{t, 0, t_{CMB}\}$].
- The **sound** horizon at t_{CMB} is given by
 - $d_s(t_{CMB}) = a(t_{CMB})*Integrate[c_s(t) dt/a(t), {t,0,t_{CMB}}],$ where $c_s(t)$ is the time-dependent speed of sound of photon-baryon fluid.

- The WMAP 7-year values:
 - $I_{CMB} = \pi/\theta = \pi D_A(z_{CMB})/d_s(z_{CMB}) = 302.69 \pm 0.76$
 - CMB data constrain the ratio, D_A(Zсмв)/d_s(Zсмв).
 - $r_s(z_{CMB}) = (1 + z_{CMB})d_s(z_{CMB}) = 146.6 \pm 1.6$ Mpc (comoving)

40

- Color: constraint from $I_{CMB} = \pi D_A(z_{CMB})/d_s(z_{CMB})$ with $z_{EO} \& \Omega_b h^2$.
 - Black contours: Markov Chain from WMAP 3yr (Spergel et al. 2007)

BAO in Galaxy Distribution

• The same acoustic oscillations should be hidden in this galaxy distribution...

• The existence of a localized clustering scale in the 2-point function yields oscillations in Fourier space.

Okumura et al. (2007)

Sound Horizon Again

- The clustering scale, dBAO, is given by the physical distance traveled by the sound wave from the Big Bang to the decoupling of baryons at zBAO=1020.5±1.6 (c.f., zCMB=1091±1).
- The baryons decoupled slightly later than CMB.
 - By the way, this is not universal in cosmology, but accidentally happens to be the case for our Universe.
 - If $3\rho_{\text{baryon}}/(4\rho_{\text{photon}}) = 0.64(\Omega_b h^2/0.022)(1090/(1+z_{\text{CMB}}))$ is greater than unity, $z_{\text{BAO}}>z_{\text{CMB}}$. Since our Universe happens to have $\Omega_b h^2 = 0.022$, $z_{\text{BAO}}< z_{\text{CMB}}$. (ie, $d_{\text{BAO}}>d_{\text{CMB}}$) 45

Standard Rulers in CMB & Matter

• For flat LCDM, but very similar results for $w \neq -1$ and curvature $\neq 0!$

Komatsu et al. (2009)

Not Just D_A(z)...

- A really nice thing about BAO at a given redshift is that it can be used to measure not only $D_A(z)$, but also the expansion rate, H(z), directly, at **that** redshift.
 - BAO perpendicular to l.o.s
 - $= D_A(z) = d_s(z_{BAO})/\theta$
 - BAO parallel to l.o.s
 - $=> H(z) = c\Delta z / [(1+z)d_s(z_{BAO})]$

Two-point correlation function measured from the SDSS Luminous Red Galaxies (Gaztanaga, Cabre & Hui 2008)

WMAP7+BAO+...

•At the moment, BAO is 0.01 great for fixing curvature, but not good for fixing w 0.00

•We still need supernovae ą -0.01 for fixing w, but this would change as more BAO data -0.02 (especially at higher redshifts) -0.03become available.

-0.04

0.02

Komatsu et al. (2011)

$w(z) = w_0 + w_a + z/(1 + z)$

0

-1

-2

-3

 \gtrsim

 Cosmological constant, $w_0 = -1$ and $w_a = 0$, are perfectly consistent with data.

•Of course we all want this to change at some point...

Komatsu et al. (2011)

Hobby-Eberly Telescope Dark Energy Experiment (HETDEX)

1st Stars about 400 million yrs.

Use 9.2-m HET to map the universe using 0.8M Lyman-alpha emitting galaxies in z=1.9-3.5

Dark Energy Accelerated Expansion

Galaxies, Planets, etc.

HETDEX Foot-print (in RA-DEC coordinates)

Beyond BAO

- BAOs capture only a fraction of the information contained in the galaxy power spectrum!
- The full usage of the 2-dimensional power spectrum leads to a substantial improvement in the precision of distance and expansion rate measurements.

BAO vs Full Modeling

- Full modeling improves upon the determinations of D_A & H by more than a factor of two.
- On the D_A-H plane, the size of the ellipse shrinks by more than a factor of four.

Shoji, Jeong & Komatsu (2008) Modeling

Alcock-Paczynski: The Most Important Thing For HETDEX

- Where does the improvement come from?
 - The Alcock-Paczynski test is the key. This is the most important component for the success of the HETDEX survey.

The AP Test: How That Works

• The key idea: (in the absence of the redshift-space) distortion - we will include this for the full analysis; we ignore it here for simplicity), the distribution of the power should be **isotropic** in Fourier space.

The AP Test: How That Works

• D_A : (RA, Dec) to the transverse separation, r_{perp} , to the transverse wavenumber

•
$$k_{perp} = (2\pi)/r_{perp} = (2\pi)[Ar$$

• H: redshifts to the parallel separation, r_{para}, to the parallel wavenumber

• $k_{para} = (2\pi)/r_{para} = (2\pi)H/($

If D_A and H are If D_A is wrong: If H is wrong: correct:

ngle on the sky]/DA

$$(c\Delta z)$$

The AP Test: How That Works

• D_A : (RA, Dec) to the transverse separation, r_{perp} , to the transverse wavenumber

•
$$k_{perp} = (2\pi)/r_{perp} = (2\pi)[Ar$$

• H: redshifts to the parallel separation, r_{para}, to the parallel wavenumber

• $k_{para} = (2\pi)/r_{para} = (2\pi)H/($

If D_A and H are correct:

ngle on the sky]/DA

$$(c\Delta z)$$

D_AH from the AP test

- So, the AP test can't be used to determine D_A and H separately; however, it gives a measurement of D_AH.
- Combining this with the BAO information, and marginalizing over the redshift space distortion, we get the solid contours in the figure.

Redshift Space Distortion

 Both the AP test and the redshift space distortion make the distribution of the power anisotropic. Would it spoil the utility of this method?

WMAP Amplitude Prior

• WMAP measures the amplitude of curvature perturbations at $z \sim 1090$. Let's call that R_k . The relation to the density fluctuation is

$$\delta_{m,\mathbf{k}}(z) = \frac{2k^3}{5H_0^2\Omega_m} \mathcal{R}_{\mathbf{k}}'$$

• Variance of R_k has been constrained as:

 $\Delta_{\mathcal{R}}^2(k_{WMAP}) = (2.208 \pm 0.078) \times 10^{-9} (68\% \text{ CL})$

where $k_{WMAP}=0.027 \text{ Mpc}^{-1}$

T(k)D(k,z)

Then Solve This Diff. Equation...

Ignoring the mass of neutrinos and modifications to gravity, one can obtain the growth rate by solving the following differential equation (Wang & Steinhardt 1998; Linder & Jenkins 2003): g(z)=(1+z)D(z)

(76)

Alexey Vikhlinin, from a slide presented at the **IPMU Dark Energy Conference** in Japan, June 2009

- Neutrinos suppress the matter power spectrum on small scales (k>0.1 h Mpc⁻¹).
- A useful number to remember:
 - For $\sum m_v = 0.1$ eV, the power spectrum at k>0.1 h Mpc⁻¹ is suppressed by ~7%.
 - We can measure this easily!

Neutrino Mass and P(k)

Total neutrino mass: coming from the small scale

- $\Delta P/P \sim -8\Omega_v/\Omega_m = -[8/(\Omega_m h^2)]\Sigma m_v/($
- Where the suppression begins depends on individual masses!

•
$$k_{\mathrm{fs},i}(z) \equiv \sqrt{\frac{3}{2}} \frac{H(z)}{(1+z)\sigma_{v,i}(z)} \simeq -\frac{1}{2} \frac{H(z)}{(1+z)\sigma_{v,i}(z)}$$

 $\frac{0.677}{(1+z)^{1/2}} \left(\frac{m_{\nu,i}}{1 \text{ eV}}\right) \Omega_{\rm m}^{1/2} h \text{ Mpc}^{-1}$

SN limited: error goes as I/(number density)/sqrt(volume)

70

• ~6x better than WMAP 7-year+ H_0

WMAP7 only WMAP7+ H_0 (HKP) WMAP7+ H_0 (SHOES) 70 65 75 80 $H_0 [km/s/Mpc]$

Summary

- Three (out of four) questions:
 - What is the physics of inflation?
 - P(k) shape (esp, dn/dlnk) and non-Gaussianity
 - What is the nature of dark energy?
 - $D_A(z)$, H(z), growth of structure
 - What is the mass of neutrinos?
 - P(k) shape
- CMB and large-scale structure observations can lead to major breakthroughs in any of the above questions.

72