Observing Primordial Fluctuations From the Early Universe: *Gaussian*, or *non-Gaussian*?

> Eiichiro Komatsu The University of Texas at Austin Colloquium at the University of Oklahoma, February 21, 2008

Messages From the Primordial Universe...

The Cosmic Microwave Background COBE

COBE

WMAP

1989

Press Release from the Nobel Foundation

[COBE's] measurements also marked the inception of cosmology as a precise science. It was not long before it was followed up, for instance by the WMAP satellite, which yielded even clearer images of the background radiation.

> WMAP 2001

A Little Advertisement...

- We have released the 1-year WMAP results in February 2003, and 3-year results in March 2006.
- Well, it has been two years since the last release...
- It's time to release the 5-year results.
- The 5-year results coming near you very soon --- in a week or two!

Microwave Sky (minus the mean temperature) as seen by WMAP

What is shown here?

The Angular Power Spectrum

- CMB temperature anisotropy is very close to Gaussian (but I have a lot to say about this later!); thus, its spherical harmonic transform, a_{lm}, is also very close to Gaussian.
- If a_{lm} is Gaussian, the power spectrum:

$$C_l = \left\langle a_{lm} a_{lm}^* \right\rangle$$

completely specifies statistical properties of CMB.

What Temperature Tells Us

Composition of Our Universe Determined by WMAP 3yr

Mysterious "Dark Energy" occupies **75.9±3.4%** of the total energy of the Universe.

CMB to Cosmology

Seeing the shape and amplitude of the primordial fluctuations

And, WMAP Talk Usually Ends Here. But...

• These results are exciting, but is this all we can learn from the WMAP data?

 In particular, is this all we can learn about the primordial universe from WMAP?

Why Study Non-Gaussianity?

- Who said that CMB must be Gaussian?
 - Don't let people take it for granted.
 - It is rather remarkable that the distribution of the observed temperatures is so close to a Gaussian distribution.
 - The WMAP map, when smoothed to 1 degree, is entirely dominated by the CMB signal.
 - If it were still noise dominated, no one would be surprised that the map is Gaussian.
 - The WMAP data are telling us that primordial fluctuations are pretty close to a Gaussian distribution.
 - How common is it to have something so close to a Gaussian distribution in astronomy?
 - It is not so easy to explain why CMB is Gaussian, unless we have a compelling early universe model that predicts Gaussian primordial fluctuations: e.g., *Inflation*.

How Do We Test Gaussianity of CMB?

Spergel et al. (2007)

One-point PDF from WMAP

- The one-point distribution of CMB temperature anisotropy looks pretty Gaussian.
 Left to right: Q (41GHz), V (61GHz), W (94GHz).
- We are therefore talking about quite a subtle effect.

Two Approaches to Testing Non-Gaussianity

I. Blind Tests / "Discovery" Mode

- This approach has been most widely used in the literature.
- One may apply one's favorite statistical tools (higherorder correlations, topology, isotropy, etc) to the data, and show that the data are (*in*)consistent with Gaussianity at xx% CL.
- PROS: Model-independent. Very generic.
- CONS: We don't know how to interpret the results.
 - "The data are consistent with Gaussianity" ---what physics do we learn from that? It is not clear what could be ruled out using this kind of test

Two Approaches to Testing Non-Gaussianity

- II. "Model-testing" Mode
 - Somewhat more recent approaches.
 - Try to constrain "Non-gaussian parameter(s)" (e.g., f_{NL})
 - PROS: We know what we are testing, we can quantify our constraints, and we can compare different data sets.
 - CONS: Highly model-dependent. We may well be missing other important non-Gaussian signatures.

Cosmology and Fundamental Physics: 6 Numbers

- Successful early-universe models <u>must</u> satisfy the following observational constraints:
 - The observable universe is nearly flat, Ω_K
 <0(0.02)</p>
 - The primordial fluctuations are
 - Nearly Gaussian, |f_{NL}|<O(100)
 - Nearly scale invariant, |n_s-1|<O(0.05), |dn_s/dlnk|
 <O(0.05)
 - Nearly adiabatic, (non-adi)/(adi)<O(0.2) 21

Cosmology and Fundamental Physics: 6 Numbers

- A "generous" theory would make cosmologists very happy by producing detectable primordial gravitational waves (r>0.01)...
 - But, this is not a requirement yet.
 - Currently, r<O(0.5)</p>

Gaussianity vs Flatness

- We are generally happy that geometry of our observable Universe is flat.
 - Geometry of our Universe is consistent with a flat geometry to <u>~2%</u> accuracy at 95% CL. (Spergel et al., WMAP 3yr)
- What do we know about Gaussianity?
 - ⁻ Parameterize non-Gaussianity: $\Phi = \Phi_L + f_{NL} \Phi_L^2$
 - $\Phi_L \sim 10^{-5}$ is a Gaussian, linear curvature perturbation in the matter era
 - Therefore, f_{NL} <100 means that the distribution of Φ is consistent with a Gaussian distribution to ~100×(10⁻⁵)²/(10⁻⁵)=<u>0.1%</u> accuracy at 95% CL.
- "Inflation is supported more by Gaussianity than by flatness."

What is Φ ?

- By Φ I mean the "curvature perturbation," which is minus of the usual Newtonian gravitational potential.
- E.g., in the Schwarzschild spacetime,
 - $-\Phi = GM/R$
 - -Newtonian potential = -GM/R

Why $\Phi?$

- The curvature perturbation generates temperature anisotropy that we observe.
- On very large angular scales (>10 degrees), we have a simple relationship from the cosmological perturbation theory:

 $- dT/T = (-1/3)\Phi$

 This is called the "Sachs-Wolfe effect" (Sachs & Wolfe 1967)

Why is Φ (so close to) Gaussian?

- Inflation explains this as follows.
- The CMB fluctuations that we observe today in WMAP were created from quantum fluctuations of a scalar field in vacuum during the epoch of inflation.
- Inflation demands the scalar field be almost interaction-free.
- Now, quantum mechanics: the wave function of a non-interacting field in the ground state is a Gaussian! 26

But, not precisely Gaussian...

- However small they are, there are always corrections to such a simple statement.
- Interactions are small, but they are not zero.
- What if the initial state was not in vacuum?
- A simple-minded form of the correction: $\Phi = \Phi_{L} + f_{NL} \Phi_{L}^{2}$

What Non-Gaussianity Does

- In the Sachs-Wolfe limit,
 - $dT/T = (-1/3)[\Phi + f_{NL}\Phi^2]$
 - where Φ is a Gaussian random field.
 - dT/T is no longer Gaussian!
- For small angular scales, the Sachs-Wolfe formula is no longer true, and we must take into account the acoustic physics at the decoupling epoch at z~1090.

How Would f_{NL} Modify PDF?

One-point PDF is not useful for measuring primordial NG. We need something better:

- •Three-point Function
 - •Bispectrum
- •Four-point Function
 - •Trispectrum
- Morphological Test
 - Minkowski Functionals

Komatsu & Spergel (2001) **Bispectrum of CMB** $a_{lm} \equiv \int d^2 \hat{\mathbf{n}} \frac{\Delta T(\hat{\mathbf{n}})}{T} Y^*_{lm}(\hat{\mathbf{n}})$ I₁ I_3 $= 4\pi (-i)^l \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \Phi(\mathbf{k}) g_{Tl}(k) Y_{lm}^*(\hat{\mathbf{k}})$ 12 $B_{l_1l_2l_3}^{m_1m_2m_3} \equiv \langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3} \rangle = \mathcal{G}_{l_1l_2l_3}^{m_1m_2m_3}b_{l_1l_2l_3}$ $b_{l_1 l_2 l_3}^{primary} = 2 \int_0^\infty r^2 dr \left[b_{l_1}^L(r) b_{l_2}^L(r) b_{l_3}^{NL}(r) +$ (cyclic)

$$b_l^L(r) \equiv \frac{2}{\pi} \int_0^\infty k^2 dk P_{\Phi}(k) g_{Tl}(k) j_l(kr),$$

$$b_l^{NL}(r) \equiv \frac{2}{\pi} \int_0^\infty k^2 dk f_{NL} g_{Tl}(k) j_l(kr).$$
 32

Komatsu & Spergel (2001)

Komatsu et al. (2003); Spergel et al. (2007)

Bispectrum Constraints

$$\begin{aligned} & \underset{l_{2}}{\overset{l_{4}}{\longrightarrow}} & Okamoto \ \& \ Hu \ (2002); \ Kogo \ \& \ Komatsu \ (2006) \\ & \underset{l_{2}}{\longrightarrow} & \mathbf{Trispectrum of CMB} \\ & \underset{l_{3}}{\overset{l_{4}}{\longrightarrow}} & \underset{l_{3}}{\overset{l_{3}}{\longrightarrow}} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{2}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{2}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{2}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} \\ & \underset{l_{2}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} & \underset{l_{3}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{3}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{3}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{3}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} & \underset{l_{4}}{\longrightarrow} \\ & \underset{l_{4}}{\longrightarrow} &$$

where

$$P_{l_{3}l_{4}}^{l_{1}l_{2}}(L) = t_{l_{3}l_{4}}^{l_{1}l_{2}}(L) + (-1)^{2L+l_{1}+l_{2}+l_{3}+l_{4}}t_{l_{4}l_{3}}^{l_{2}l_{1}}(L) + (-1)^{L+l_{3}+l_{4}}t_{l_{4}l_{3}}^{l_{1}l_{2}}(L) + (-1)^{L+l_{1}+l_{2}}t_{l_{3}l_{4}}^{l_{2}l_{1}}(L).$$

$$\begin{split} t_{l_{3}l_{4}}^{l_{1}l_{2}}(L) &= \int r_{1}^{2}dr_{1}r_{2}^{2}dr_{2} \ F_{L}(r_{1},r_{2})\alpha_{l_{1}}(r_{1})\beta_{l_{2}}(r_{1})\alpha_{l_{3}}(r_{2})\beta_{l_{4}}(r_{2})h_{l_{1}Ll_{2}}h_{l_{3}Ll_{4}} \\ &+ \int r^{2}dr \ \beta_{l_{2}}(r)\beta_{l_{4}}(r) \left[\mu_{l_{1}}(r)\beta_{l_{3}}(r) + \beta_{l_{1}}(r)\mu_{l_{3}}(r)\right]h_{l_{1}Ll_{2}}h_{l_{3}Ll_{4}}, \end{split}$$

alpha_l(r)=2b_l^{NL}(r); beta_l(r)=b_l^L(r);
$$\mu_l(r) \equiv \frac{2}{\pi} \int k^2 dk f_2 g_{Tl}(k) j_l(kr)$$

Measuring Trispectrum

- It's pretty painful to measure all the quadrilateral configurations.
 - Measurements from the COBE 4-year data (Komatsu 2001; Kunz et al. 2001)
- Only limited configurations measured from the WMAP 3-year data

– Spergel et al. (2007)

• No evidence for non-Gaussianity, but f_{NL} has not been constrained by the trispectrum yet. (Work to do.) 36

Kogo & Komatsu (2006)

Trispectrum: Not useful for WMAP, but maybe useful for Planck, if f_{NL} is greater than ~50

Komatsu et al. (2003); Spergel et al. (2007); Hikage et al. (2008)

MFs from WMAP

Gaussianity vs Flatness: Future

- Flatness will never beat Gaussianity.
 - In 5-10 years, we will know flatness to 0.1% level.
 - In 5-10 years, we will know Gaussianity to <u>0.01%</u> level (f_{NL}~10), or even to <u>0.005%</u> level (f_{NL}~5), at 95% CL.
- However, a real potential of Gaussianity test is that we might detect something at this level (multi-field, curvaton, DBI, ghost cond., new ekpyrotic...)

More On Future Prospects

 CMB: Planck (temperature + polarization): f_{NL}(local)<6 (95%)

- Yadav, Komatsu & Wandelt (2007)

 Large-scale Structure: e.g., ADEPT, CIP: f_{NL}(local)<7 (95%); f_{NL}(equilateral)<90 (95%)

- Sefusatti & Komatsu (2007)

CMB and LSS are independent. By combining these two constraints, we get f_{NL}(local)<4.5.
 This is currently the best constraint that we can possibly achieve in the foreseeable future (~10 years)

If f_{NI} is found, what are the implications?

Three Sources of Non-Gaussianity

- It is important to remember that f_{NL} receives <u>three contributions</u>:
- **1.** Non-linearity in inflaton fluctuations, $\delta \phi$
 - Falk, Rangarajan & Srendnicki (1993)
 - Maldacena (2003)
- 2. Non-linearity in Φ - $\delta\phi$ relation
 - Salopek & Bond (1990; 1991)
 - Matarrese et al. (2nd order PT papers)
 - δN papers; gradient-expansion papers
- 3. Non-linearity in $\Delta T/T-\Phi$ relation
 - Pyne & Carroll (1996)
 - Mollerach & Matarrese (1997)

1. Generating Non-Gaussian $\delta \varphi$

- You need cubic interaction terms (or higher order) of fields.
 - V(φ)~φ³: Falk, Rangarajan & Srendnicki (1993) [gravity not included yet]
 - Full expansion of the action, including gravity action, to cubic order was done a decade later by Maldacena (2003)

$$\phi = \phi(t) + \varphi(t, x)$$

$$S_{3} = \int e^{3\rho} \left(-\frac{\dot{\phi}}{4\dot{\rho}} \varphi \dot{\varphi}^{2} - e^{-2\rho} \frac{\dot{\phi}}{4\dot{\rho}} \varphi(\partial\varphi)^{2} - \dot{\varphi}\partial_{i}\chi \partial_{i}\varphi + \frac{\dot{\phi}^{2}}{4\dot{\rho}} \frac{\dot{\phi}}{\varphi} \right)$$

$$+ \frac{3\dot{\phi}^{3}}{8\dot{\rho}} \varphi^{3} - \frac{\dot{\phi}^{5}}{16\dot{\rho}^{3}} \varphi^{3} - \frac{\dot{\phi}V''}{4\dot{\rho}} \varphi^{3} - \frac{V'''}{6} \varphi^{3} + \frac{\dot{\phi}^{3}}{4\dot{\rho}^{2}} \varphi^{2} \dot{\varphi} + \frac{\dot{\phi}^{2}}{4\dot{\rho}} \varphi^{2} \partial^{2}\chi$$

$$+ \frac{\dot{\phi}}{4\dot{\rho}} (-\varphi \partial_{i}\partial_{j}\chi \partial_{i}\partial_{j}\chi + \varphi \partial^{2}\chi \partial^{2}\chi)$$

$$44$$

2. Non-linear Mapping

- The observable is the curvature perturbation, R. How do we relate R to the scalar field perturbation $\delta \phi$?
- Hypersurface transformation (Salopek & Bond 1990); a.k.a. δN formalism.

(1)Scalar field perturbation (2)Evolve the scale factor, a, until ϕ matches ϕ_0 (3)R=In(a)-In(a₀)

Komatsu, astro-ph/0206039

Result of Non-linear Mapping

 $N = -\frac{4\pi G}{\partial H/\partial \phi}$ [N is the Lapse function.]

$$\mathcal{R}_{\rm com} = -\int_{\phi_0}^{\phi_0 + \delta\phi_{\rm flat}} d\phi \; \frac{N(\phi)H(\phi)}{\dot{\phi}} = 4\pi G \int_{\phi_0}^{\phi_0 + \delta\phi_{\rm flat}} d\phi \left[\frac{\partial\ln H}{\partial\phi}\right]^{-1}$$

Expand R to the quadratic order in $\delta \phi$:

For standard slow-roll inflation models, this is of order the slow-roll parameters, O(0.01).

Lyth & Rodriguez (2005)

Multi-field Generalization

A=1,..., # of fields in the system

Then, again by expanding R to the quadratic order in $\delta \phi_A$, one can find f_{NL} for the multi-field case.

Example: the curvaton scenario, in which the second derivative of the integrand with respect to $\phi_{2,}$ the "curvaton field," divided by the square of the first derivative is much larger than slow-roll param. ₄₇

3. Curvature Perturbation to CMB

- The linear Sachs-Wolfe effect is given by dT/T = -(1/3) $\Phi_{\rm H}$ = +(1/3) $\Phi_{\rm A}$
- The non-linear SW effect is

$$\frac{\Delta T}{T} = \frac{1}{3}\Phi_A + \frac{1}{18}\Phi_A^2 - \nabla^{-4}\partial_i\partial^j(\partial^i\Phi_H\partial_j\Phi_H) - \frac{1}{3}\nabla^{-2}(\partial^i\Phi_H\partial_i\Phi_H)$$

where time-dependent terms (called the integrated SW effect) are not shown. (Bartolo et al. 2004)

• These terms generate f_{NL} of order unity.

Implications of a detection of f_{NL} , if it is found

- f_{NL} never exceeds 10 in the conventional picture of inflation in which
 - All fields are **slowly rolling**, and
 - All fields have the **canonical kinetic term**.
- Therefore, an unambiguous detection of f_{NL} >10 rules out most (>99%) of the existing inflation models.
- Who would the "survivors" be?

3 Ways to Get Larger Non-Gaussianity from Early Universe

1. Break slow-roll

– Features (steps, bumps...) in V(ϕ)

- Kofman, Blumenthal, Hodges & Primack (1991); Wang & Kamionkowski (2000); Komatsu et al. (2003); Chen, Easther & Lim (2007)
- Ekpyrotic model, old and new
 - Buchbinder, Khoury & Ovrut (2007); Koyama, Mizuno, Vernizzi & Wands (2007)

3 Ways to Get Larger Non-Gaussianity from Early Universe

2. Amplify field interactions

- Often done by **non-canonical kinetic** terms $S = \int d^4x \, \frac{1}{2} \dot{\pi}^2 - \frac{\alpha^2}{2M^2} (\nabla^2 \pi)^2 - \frac{\beta}{2M^2} \dot{\pi} (\nabla \pi)^2 + \cdots$
 - Ghost inflation
 - Arkani-Hamed, Creminelli, Mukohyama & Zaldarriaga (2004) $\mathcal{L}_{eff} = -\frac{1}{a_e}\sqrt{-g}\left(f(\phi)^{-1}\sqrt{1+f(\phi)g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi} + V(\phi)\right)$
 - DBI Inflation
 - Alishahiha, Silverstein & Tong (2004)
- Any other models with a low effective sound speed of scalar field: they yield $f_{NL} \sim -1/(c_s)^2$
 - Chen, Huang, Kachru & Shiu (2004); Cheung, Creminelli, Fitzpatrick, Kaplan & Senatore (2007)

3 Ways to Get Larger Non-Gaussianity from Early Universe

3. Use multi-field:

- A class of multi-models called "curvaton models" can generate large non-Gaussianity
 - Linde & Mukhanov (1997); Lyth & Wands (2002); Lyth, Ungarelli & Wands (2002)

Subtlety: Triangle Dependence

- There are actually two $f_{\rm NL}$

Eq.

 - "Local," which has the largest amplitude in the squeezed configuration

- "Equilateral," which has the largest amplitude in the equilateral configuration
- So the question is, "which model gives f_{NL}(local), and which f_{NL}(equilateral)?"

Classifying Non-Gaussianities in the Literature

- Local Form
 - Ekpyrotic models
 - Curvaton models
- Equilateral Form
- Is any of these a winner?Non-Gaussianity may tell us soon. We will find out!
- Ghost condensation, DBI, low speed of sound models
- Other Forms
 - Features in potential, which produce large non-Gaussianity within narrow region in I

Summary

- Since the introduction of f_{NL}, the research on non-Gaussianity as a probe of the physics of early universe has evolved tremendously.
- I hope I convinced you that f_{NL} is as important a tool as Ω_K, n_s, dn_s/dlnk, and r, for constraining inflation models.
- In fact, it has the best chance of ruling out the largest population of models...

Concluding Remarks

- Stay tuned: WMAP continues to observe, and Planck will soon be launched (Oct 31, this year)
- Non-Gaussianity has provided cosmologists, and physicists who work on fundamental physics, with a unique opportunity to work together.
- This is probably the most important contribution that non-Gaussianity has made to the community.