Clusters Detected by WMAP

Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) SZX Huntsville, September 21, 2011

1

Outline

Coma

- Coma is sitting on a –100uK CMB fluctuation
- A good agreement between SZ and X-ray data on individual clusters
- Effects of dynamical state (more precisely cool-core vs non-cool-core) on SZ
 - Also seen by Planck
- Lessons learned from the stacking analysis
 - Scaling relations...

WMAP has collected 9 years of data, and left L2.

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

Stacked Temperature

Stacked Polarization

January 2010: The seven-year

WMAP 7-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S.Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

- K.M. Smith
- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L.Verde

WMAP 7-Year Papers

- Jarosik et al., "Sky Maps, Systematic Errors, and Basic Results" Astrophysical Journal Supplement Series (ApJS), 192, 14 (2011)
- Gold et al., "Galactic Foreground Emission" ApJS, 192, 15 (2011)
- Weiland et al., "Planets and Celestial Calibration Sources" ApJS, 192, 19 (2011)
- Bennett et al., "Are There CMB Anomalies?" ApJS, 192, 17 (2011)
 Larson et al., "Power Spectra and WMAP-Derived Parameters"
- Larson et al., "Power Spectra and ApJS, 192, 16 (2011)
- Komatsu et al., "Cosmological Interpretation" ApJS, 192, 18 (2011)

The SZ Effect: Decrement and Increment

• RXJ1347-1145 (high-resolution SZ maps) -Left, SZ increment (350GHz, 15" FWHM, Komatsu et al. 1999) -Right, SZ decrement (150GHz, 12" FWHM, Komatsu et al. 2001)

WMAP Temperature Map

-200

7

Where are clusters? Coma Virgo

$z \le 0.1; 0.1 \le z \le 0.2; 0.2 \le z \le 0.45$ Radius = $5\theta_{500}$

8

We find that the CMB fluctuation in the direction of Coma is $\approx -100 \text{uK}$. (This is a new result!)

 $y_{coma}(0) = (7\pm 2) \times 10^{-5}$ (68%CL)

A Question

- Are we detecting the **expected** amount of electron pressure, P_e , in the SZ effect?
 - Expected from X-ray observations?
 - Expected from theory?

Arnaud et al., A&A, 517, A92 (2010) Arnaud et al. Profile

• A fitting formula for the average electron pressure profile as a function of the cluster mass (M_{500}), derived from 33 nearby (z<0.2) clusters (REXCESS sample).

Arnaud et al., A&A, 517, A92 (2010) al. Profile

A significant
 scatter exists at
 R<0.2R₅₀₀, but a
 good convergence
 in the outer part.

The X-ray data (XMM) are provided by A. Finoguenov.

• $M_{500} = 6.6 \times 10^{14} h^{-1} M_{sun}$ is estimated from the mass-temperature relation (Vikhlinin et al.) • $T_x^{coma} = 8.4 \text{keV}.$ • Arnaud et al.'s profile overestimates both the direct X-ray data and WMAP data by the same factor (0.65)! • To reconcile them, Tx^{coma}=6.5keV is 1.00

13

required, but that is

way too low.

Well...

- That's just one cluster. What about the other clusters?
 - We measure the SZ effect of a sample of well-studied nearby clusters compiled by Vikhlinin et al.

Coma (non-cooling flow) $M_{500} = 6.7 \times 10^{14} h^{-1} M_{sun}$ A2029 (cooling flow) **Comatsu** $M_{500} = 6.2 \times 10^{14} h^{-1} M_{sun}$ A754 (non-cooling flow) $M_{500} = 6.1 \times 10^{14} h^{-1} M_{sun}$ **Pt** β A3667 (non-cooling flow) $M_{500} = 5.3 \times 10^{14} h^{-1} M_{sun}$ N A85 (cooling flow) $M_{500} = 4.3 \times 10^{14} h^{-1} M_{sun}$ ZwCl1215 (cooling flow) $M_{500} = 4.1 \times 10^{14} h^{-1} M_{sun}$ 0.2 0.4 0.6 0.8 1.2 1.4 1.0 θ/θ_{500}

-yea

 \square

β

S

D

ents

15

SZ seen in the WMAP

Mass Range ^a	# of clusters
$6 \le M_{500} < 9$	5
$4 \le M_{500} < 6$	6
$2 \le M_{500} < 4$	9
$1 \le M_{500} < 2$	9
$4 \le M_{500} < 9$	11
$1 \le M_{500} < 4$	18
$4 \le M_{500} < 9$	
cooling flow ^d	5
non-cooling flow ^e	6
$2 \le M_{500} < 9$	20
$1 \le M_{500} < 9$	29

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. ¹⁶

 $\begin{array}{c} 0.02 \pm 0.12 \\ 0.78 \pm 0.12 \\ 0.629 \pm 0.094 \end{array}$

Signature of mergers?

Mass Range ^a	# of clusters
$6 \le M_{500} < 9$	5
$4 \le M_{500} < 6$	6
$2 \le M_{500} < 4$	9
$1 \le M_{500} < 2$	9
$4 \le M_{500} < 9$	11
$1 \le M_{500} < 4$	18
$4 \le M_{500} \le 9$	
cooling flow ^d	5
non-cooling flow ^e	6
$2 \le M_{500} < 9$	20
$1 \le M_{500} < 9$	29

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. ¹⁷

SZ: Main Results

- The X-ray data on the *individual* clusters agree well with the SZ measured by WMAP.
- Distinguishing between relaxed (CF) and non-relaxed (non-CF) clusters is important, even for SZ.
- This is confirmed by Planck (with a LOT more signalto-noise!)

Arnaud et al., A&A, 517, A92 (2010)

• In Arnaud et al., they reported that the cooling flow clusters have much steeper pressure profiles in the inner part.

"World" Power Spectrum

 The SPT measured the secondary anisotropy from (possibly) SZ. The power spectrum amplitude is Asz=0.4-0.6 times the expectations. Why?

Lower Asz: **Two** Possibilities

$$C_l = g_{\nu}^2 \int_0^{z_{\text{max}}} dz \frac{dV}{dz} \int_{M_{\text{min}}}^{M_{\text{max}}}$$

[1] The number of clusters is less than expected. • In cosmology, this is parameterized by the so-called " σ_8 "

parameter.

$$\frac{l(l+1)C_l}{2\pi} \simeq 330 \,\mu \mathrm{K}^2 \,\sigma_8^7 \,\left(\frac{\Omega}{0.4}\right)$$

• σ_8 is 0.77 (rather than 0.81): $\sum m_v \sim 0.2 eV$?

 $\frac{dn(M,z)}{dM} |\tilde{y}_l(M,z)|^2$

 $\left(\frac{\Omega_{\rm b}h}{0.035}\right)^2 \times [gas \ pressure]^2$

Lower Asz: Two Possibilities

$$C_l = g_{\nu}^2 \int_0^{z_{\max}} dz \frac{dV}{dz} \int_{M_{\min}}^{M_{\max}} dM \frac{dn(M,z)}{dM} \left| \tilde{y}_l(M,z) \right|^2$$

• [2] Gas pressure per cluster is less than expected.

- The power spectrum is [gas pressure]².
- A_{SZ}=0.4–0.6 means that the gas pressure is less than expected by ~0.6–0.7.
- What would a dynamical state (more precisely, cool-core vs noncool-core) do?

Effects of Dynamical State on CI

Effects of Dynamical State on C

Conclusion |

- Coma is sitting on top of a –100uK CMB fluctuation
- WMAP could detect SZ toward a few other massive clusters, even seeing the difference between cool-core and non-cool-core
 - Distinguishing relaxed and non-relaxed clusters is important, if you can resolve the profile of clusters

Statistical Detection of SZ

- Coma is bright enough to be detected by WMAP.
- Some clusters are bright enough to be detected individually by WMAP, but the number is still limited.
- By stacking the pixels at the locations of known clusters of galaxies (detected in X-ray), we detected the SZ effect at 8σ .
 - Many statistical detections reported in the literature: (Fosalba et al. 2003; Hernández-Monteagudo & Rubiño-Martín 2004; Hernández-Monteagudo et al. 2004; Myers et al. 2004; Afshordi et al. 2005; Lieu et al. 2006; Bielby & Shanks 2007; Afshordi et al. 2007; Atrio-Barandela et al. 2008; Kashlinsky et al. 2008; Diego & Partridge 2009; Melin et al. 2010).

ROSAT Cluster Catalog Coma

$z \le 0.1; 0.1 < z \le 0.2; 0.2 < z \le 0.45$ Radius = 5 θ_{500}

• 742 clusters in |b|>20 deg (before Galaxy mask)

• 400, 228 & 114 clusters in $z \le 0.1, 0.1 \le 0.2 \le 0.2 \le 0.45$.

Size-Luminosity Relations

- To calculate the expected pressure profile for each cluster, we need to know the size of the cluster, r₅₀₀.
- This needs to be derived from the observed properties of X-ray clusters.
 - The best quantity is the gas mass times temperature, but this is available only for a small subset of clusters.

• We use r₅₀₀-L_X relation (Boehringer et al.): $\times \left(\frac{L_{\rm X}}{10^{44} \ h^{-2} \ {\rm erg \ s^{-1}}}\right)^{0.228 \pm 0.015} E(z) \equiv H(z)/H_0 = \left[\Omega_m (1+z)^3 + \Omega_\Lambda\right]^{1/2}$

Uncertainty in this relation $r_{500} = \frac{(0.753 \pm 0.063) h^{-1} \text{ Mpc}}{E(z)}$ Uncertainty in this relation is the major source of sys. error.

Mass Distribution

Scaling Relations...

Gas Pressure Profile	Type $z_{\rm ma}$	$_{\rm x} = 0.1$	$z_{\rm max} = 0.2$ E	ligh $L_X^{\rm b}$	Low L_X^{c}
Arnaud et al. (2009)	X-ray Obs. (Fid.) ^d	0.64 ± 0.09	$0.59 \pm 0.07^{+0.38}_{-0.23}$	0.67 ± 0.09	0.43 ± 0.12
Arnaud et al. (2009)	REXCESS scaling ^e	N/A	0.78 ± 0.09	0.90 ± 0.12	0.55 ± 0.16
Arnaud et al. (2009)	intrinsic scaling ^f	N/A	0.69 ± 0.08	0.84 ± 0.11	0.46 ± 0.13
Arnaud et al. (2009)	$r_{\rm out} = 2r_{500}^{\rm g}$	N/A	0.59 ± 0.07	0.67 ± 0.09	0.43 ± 0.12
Arnaud et al. (2009)	$r_{\rm out} = r_{500}^{\rm h}$	N/A	0.65 ± 0.08	0.74 ± 0.09	0.44 ± 0.14
Komatsu & Seljak (2001)	equation $(C16)$	0.59 ± 0.09	$0.46 \pm 0.06^{+0.32}_{-0.13}$	$^{1}_{8}$ 0.49 \pm 0.08	0.40 ± 0.11
Komatsu & Seljak (2001)	equation $(C17)$	0.67 ± 0.09	$0.58 \pm 0.07^{+0.33}_{-0.20}$	0.66 ± 0.09	0.43 ± 0.12
Nagai et al. (2007)	Non-radiative	N/A	$0.50 \pm 0.06^{+0.28}_{-0.13}$	$^{8}_{8}$ 0.60 \pm 0.08	0.33 ± 0.10
Nagai et al. (2007)	Cooling+SF	N/A	$0.67 \pm 0.08^{+0.37}_{-0.23}$	$^{7}_{3}$ 0.79 ± 0.10	0.45 ± 0.14

• Different scaling relations can give you a variety of results

- Need for a "consistent scaling relation" (Melin), but it is not so trivial to find one
- This limits accuracy of the stacking method

Missing P in Low Mass Clusters?

Gas Pressure Profile	Type $z_{\rm ma}$	$_{x} = 0.1$	$z_{\rm max} = 0.2$ Hi	gh $L_X^{\rm b}$	Low L_X^{c}
Arnaud et al. (2009)	X-ray Obs. (Fid.) ^d	0.64 ± 0.09	$0.59 \pm 0.07^{+0.38}_{-0.23}$	0.67 ± 0.09	0.43 ± 0.12
Arnaud et al. (2009)	REXCESS scaling ^e	N/A	0.78 ± 0.09	0.90 ± 0.12	0.55 ± 0.16
Arnaud et al. (2009)	intrinsic scaling ^f	N/A	0.69 ± 0.08	0.84 ± 0.11	0.46 ± 0.13
Arnaud et al. (2009)	$r_{\rm out} = 2r_{500}{}^{\rm g}$	N/A	0.59 ± 0.07	0.67 ± 0.09	0.43 ± 0.12
Arnaud et al. (2009)	$r_{\rm out} = r_{500}^{\rm h}$	N/A	0.65 ± 0.08	0.74 ± 0.09	0.44 ± 0.14
Komatsu & Seljak (2001)	equation $(C16)$	0.59 ± 0.09	$0.46 \pm 0.06^{+0.31}_{-0.18}$	0.49 ± 0.08	0.40 ± 0.11
Komatsu & Seljak (2001)	equation $(C17)$	0.67 ± 0.09	$0.58 \pm 0.07^{+0.33}_{-0.20}$	0.66 ± 0.09	0.43 ± 0.12
Nagai et al. (2007)	Non-radiative	N/A	$0.50 \pm 0.06^{+0.28}_{-0.18}$	0.60 ± 0.08	0.33 ± 0.10
Nagai et al. (2007)	$\operatorname{Cooling+SF}$	N/A	$0.67 \pm 0.08 \substack{+0.37 \\ -0.23}$	0.79 ± 0.10	0.45 ± 0.14

• "Low Lx" has $0.45 < L_X/(10^{44} \text{ erg s}^{-1}) < 4.5$ • $M_{500} < a \text{ few x } 10^{14} \text{ h}^{-1} \text{ M}_{sun}$

• At I>3000, the dominant contributions to the SZ power spectrum come from low-mass clusters $(M_{500} < 4 \times 10^{14} h^{-1} M_{sun}).$

Komatsu and Seljak (2002)

However...

- This deficit of the pressure on low-mass clusters has not really been seen by Planck, for one of the scaling relations.
 - And they have MUCH more signal-to-noise.
- However, they also do see that the results change significantly depending on the Lx-M₅₀₀ scaling relation adopted.
 - For another scaling relation they used, they see the deficit.

A lesson [we] learned from the stacking analysis

- The stacking analysis is a potentially powerful technique for discovering unexpected phenomena
 - Optical vs SZ is very intriguing (Planck Paper XII)
- The scaling relation limits accuracy and complicates the interpretation of the results
- Once something is found, it is good to go back to individual clusters (the first part of the talk) and understand what is going on (CC vs NCC, for example)