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Large-scale Structure of the Universe (LSS)

Millenium Simulation (Springel et al., 2005)



LSS of the universe : What does it tell us?

Matter density, Ωm

Baryon density, Ωb

Amplitude of fluctuations, σ8

Angular diameter distance, dA(z)

Expansion history, H(z)

Growth of structure, D(z)

Shape of the primordial power spectrum from inflation, ns, α, ...
Massive neutrinos, mν

Dark energy, w, dw/da, ...
Primordial Non-Gaussianity, fNL, ...
Galaxy bias, b1, b2, ...



How can we extract cosmology from LSS? : Statistics

1 One point statistics
Mass function, n(M)

2 Two point statistics
Power spectrum, P (k)

3 Three point statistics
Bispectrum, B(k)

4 Four point statistics
Trispectrum, T (k)

5 n-point functions



The most popular quantity, ξ(r) and P (k)
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Correlation function ξ(r)
= Strength of clustering at a given separation r
= 〈δ(x)δ(x + r)〉
where, δ(x) = excess number of galaxies above the
mean.

We use P (k), the Fourier transform of ξ(r) :

P (k) =

∫
d3r ξ(r)e−ik·r



How do we do this?

Cosmological parameters
Matter density, Ωm

Baryon density, Ωb

Dark energy density, ΩΛ

Dark energy eq. of state, w
Hubble constant, H0

...

We have to be able to predict P (k) very accurately, as a
function of cosmological models.



Cosmological perturbation theory

quantum fluctuation

classical fluctuation
(Gaussian random field) curvature perturbation

seed of
density perturbation

Magnified
by gravitational
instability

galaxies,
etc.

comoving horizon

i) Initial condition

ii) Linear perturbation

iv) Galaxy formation

iii) Non-linear growth



Initial Condition from inflation

Inflation gives the initial power spectrum that is nearly a power
law.

P (k, ηi) = A

(
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k0

)ns+
1
2
αsln

“
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”

Inflation predicts, and observations have confirmed, that

ns ∼ 1
αs ∼ 0



Initial Power Spectrum: Tilting

Initial matter power spectrum for various ns : P (k) ∝ (k/k0)
ns



Initial Power Spectrum: Running

Initial matter power spectrum for various αs



Evolution of linear perturbations

Two key equations
The Boltzmann equation

df

dλ
= C[f ]

Perturbed Einstein’s equations

δGµν = 8πGδTµν
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Basic equations for linear perturbations

The equations for linear perturbations
Dark matter
δ′ + ikv = −3Φ′ : Continuity

v′ +
a′

a
v = −ikΨ : Euler

Baryons
δ′
b + ikvb = −3Φ′ : Continuity

v′
b +

a′

a
vb = −ikΨ+

τ ′

R
(vb + 3iΘ1) : Euler with interaction w/ photons

Photon temperature, Θ = ∆T/T
Θ′ + ikµΘ = −Φ′ − ikµΨ−τ ′ (Θ0 −Θ + µvb − 1

2P2(µ)Θ2

)
Gravity

k2Φ + 3
a′

a

(
Φ′ −Ψ

a′

a

)
= 4πGa2 (ρmδm + 4ρrΘr,0)

k2(Φ + Ψ) = −32πGa2ρrΘr,2

These are well known equations.
Observational test?



Prediction: the CMB power spectrum

Sound horizon at the photon decoupling epoch
= 147± 2 Mpc (Spergel et al. 2007)



WMAP 3-year temperature map

3-year ILC Map (Hinshaw et al., 2007)



Triumph of linear perturbation theory

3-year Temperature Power Spectrum (Hinshaw et al. 2007)
Experimental Verification of the Linear Perturbation Theory!



How about the matter P (k)?



SDSS Luminous Red Galaxies map (z < 0.474)
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SDSS main galaxies and LRGs (Tegmark et al., 2006)



SDSS LRG and main galaxy power spectrum

P (k) from main (bottom) and LRGs (top) (Tegmark et al., 2006)

Failure of linear theory is
clearly seen.



BAO from the SDSS power spectrum
10 Percival et al.

Fig. 12.— The redshift-space power spectrum recovered from the combined SDSS main galaxy and LRG sample, optimally weighted for
both density changes and luminosity dependent bias (solid circles with 1-σ errors). A flat Λ cosmological distance model was assumed with
ΩM = 0.24. Error bars are derived from the diagonal elements of the covariance matrix calculated from 2000 log-normal catalogues created
for this cosmological distance model, but with a power spectrum amplitude and shape matched to that observed (see text for details).
The data are correlated, and the width of the correlations is presented in Fig. 10 (the correlation between data points drops to < 0.33 for
∆k > 0.01 h Mpc−1). The correlations are smaller than the oscillatory features observed in the recovered power spectrum. For comparison
we plot the model power spectrum (solid line) calculated using the fitting formulae of Eisenstein & Hu (1998); Eisenstein et al. (2006), for
the best fit parameters calculated by fitting the WMAP 3-year temperature and polarisation data, h = 0.73, ΩM = 0.24, ns = 0.96 and
Ωb/ΩM = 0.174 (Spergel et al. 2006). The model power spectrum has been convolved with the appropriate window function to match the
measured data, and the normalisation has been matched to that of the large-scale (0.01 < k < 0.06 hMpc−1) data. The deviation from

this low ΩM linear power spectrum is clearly visible at k >
∼

0.06 hMpc−1, and will be discussed further in Section 6. The solid circles with
1σ errors in the inset show the power spectrum ratioed to a smooth model (calculated using a cubic spline fit as described in Percival et al.
2006) compared to the baryon oscillations in the (WMAP 3-year parameter) model (solid line), and shows good agreement. The calculation
of the matter density from these oscillations will be considered in a separate paper (Percival et al. 2006). The dashed line shows the same
model without the correction for the damping effect of small-scale structure growth of Eisenstein et al. (2006). It is worth noting that this
model is not a fit to the data, but a prediction from the CMB experiment.

The BAOs have been
measured in P (k) successfully
(Percival et al. 2006).

The planned galaxy surveys
(e.g., HETDEX, WFMOS)
will measure BAOs
with 10x smaller error bars.

Is theory ready?



Systematics: Three Non-linearities

The SDSS P (k) has been used only up to k < 0.1 hMpc−1.

Why? Non-linearities.

Non-linear evolution of matter clustering
Non-linear bias
Non-linear redshift space distortion

Can we do better?
CMB theory was ready for WMAP’s precision measurement.

LSS theory has not reached sufficient accuracy.

The planned galaxy surveys = WMAP for LSS.
Is theory ready?

The goal: LSS theory that is ready for precision measurements of
P (k) from the future galaxy surveys.



Our approach: Non-linear perturbation theory

3rd-order expansion in linear density fluctuations, δ1.
c.f. CMB theory: 1st-order (linear) theory.

Is this approach new? It has been known that non-linear
perturbation theory fails at z = 0 ←− too non-linear.

HETDEX (z > 2) and CIP (z > 3) are at higher-z, where
perturbation theory is expected to perform better.



Upcoming high-z galaxy surveys



Upcoming high-z galaxy surveys



Assumptions and basic equations

Assumptions
1 Newtonian matter fluid
2 Matter is the pressureless fluid without vorticity.

Good approximation before fluctuations go fully non-linear.
It is convenient to use the “velocity divergence”, θ = ∇ · v

Equations (Newtonian one component fluid equation)

δ̇ +∇ · [(1 + δ)v] = 0

v̇ + (v · ∇) v = − ȧ

a
v−∇φ

∇2φ = 4πGa2ρ̄δ



Go to Fourier space

Equations in Fourier space
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our using θ ≡ ∇ · v, the velocity divergence field. Using equation (5) and the Friedmann

equation, we write the continuity equation [Eq. (3)] and the Euler equation [Eq. (4)] in

Fourier space as

δ̇(k, τ ) + θ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k · k1

k2
1

δ(k2, τ )θ(k1, τ ), (6)

θ̇(k, τ ) +
ȧ

a
θ(k, τ ) +

3ȧ2

2a2
Ωm(τ )δ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k2(k1 · k2)

2k2
1k

2
2

θ(k1, τ )θ(k2, τ ),

(7)

respectively.

To proceed further, we assume that the universe is matter dominated, Ωm(τ ) = 1

and a(τ ) ∝ τ 2. Of course, this assumption cannot be fully justified, as dark energy

dominates the universe at low z. Nevertheless, it has been shown that the next-to-leading

order correction to P (k) is extremely insensitive to the underlying cosmology, if one

uses the correct growth factor for δ(k, τ ) (Bernardeau et al. 2002). Moreover, as we are

primarily interested in z ≥ 1, where the universe is still matter dominated, accuracy of our

approximation is even better. (We quantify the error due to this approximation below.) To

solve these coupled equations, we shall expand δ(k, τ ) and θ(k, τ ) perturbatively using the

n-th power of linear solution, δ1(k), as a basis:

δ(k, τ ) =
∞

∑

n=1

an(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Fn(q1,q2, · · · ,qn)δ1(q1) · · · δ1(qn), (8)

θ(k, τ ) = −
∞

∑

n=1

ȧ(τ )an−1(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(

n
∑

i=1

qi − k)

×Gn(q1,q2, · · · ,qn)δ1(q1) · · · δ1(qn). (9)

Taylor expanding δ, and θ
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n=1
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Here, the functions F and G follows the following recursion relations with the trivial initial

conditions, F1 = G1 = 1. (Jain & Bertschinger 1994)



Why 3rd order?

δ = δ1 + δ2 + δ3

where, δ2 ∝ [δ1]
2, δ3 ∝ [δ1]

3

The power spectrum from the higher order density field :

(2π)3P (k)δD(k + k′)

≡ 〈δ(k, τ)δ(k′, τ)〉
= 〈δ1(k, τ)δ1(k

′, τ)〉+ 〈δ2(k, τ)δ1(k
′, τ) + δ1(k, τ)δ2(k

′, τ)〉
+ 〈δ1(k, τ)δ3(k

′, τ) + δ2(k, τ)δ2(k
′, τ) + δ3(k, τ)δ1(k

′, τ)〉
+O(δ6

1)

Therefore, P (k) = P11(k) + P22(k) + 2P13(k)
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Non-linear matter power spectrum: analytic solution
(Vishniac 1983; Fry1984; Goroff et al. 1986;Suto & Sasaki 1991; Makino et al. 1992;
Jain & Bertschinger 1994; Scoccimarro & Frieman 1996)

Pδδ(k, τ) = D2(τ)PL(k) + D4(τ) [2P13(k) + P22(k)] ,

where,
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where

P22(k) = 2

∫

d3q

(2π)3
PL(q)PL(|k− q|)

[

F
(s)
2 (q,k− q)

]2

, (16)

2P13(k) =
2πk2

252
PL(k)

∫ ∞

0

dq

(2π)3
PL(q)

×

[

100
q2

k2
− 158 + 12

k2

q2
− 42

q4

k4

+
3

k5q3
(q2 − k2)3(2k2 + 7q2) ln

(

k + q

|k − q|

)

]

, (17)

where PL(k) stands for the linear power spectrum. While F
(s)
2 (k1,k2) should be

modified for different cosmological models, the difference vanishes when k1 ‖ k2.

The biggest correction comes from the configurations with k1 ⊥ k2, for which

[F
(s)
2 (ΛCDM)/F

(s)
2 (EdS)]2 ' 1.006 and . 1.001 at z = 0 and z ≥ 1, respectively. Here,

F
(s)
2 (EdS) is given by equation (13), while F

(s)
2 (ΛCDM) contains corrections due to Ωm 6= 1

and ΩΛ 6= 0 (Matsubara 1995; Scoccimarro et al. 1998), and we used Ωm = 0.27 and

ΩΛ = 0.73 at present. The information about different background cosmology is thus almost

entirely encoded in the linear growth factor. We extend the results obtained above to

arbitrary cosmological models by simply replacing a(τ ) in equation (15) with an appropriate

linear growth factor, D(z),

Pδδ(k, z) = D2(z)PL(k) + D4(z)[2P13(k) + P22(k)]. (18)

We shall use equation (16)–(18) to compute P (k, z).

2.2. Non-linear Halo Power Spectrum : Bias in 3rd order PT

In this section, we review the 3rd-order PT calculation as the next-to-leading

order correction to the halo power spectrum. We will closely follow the calculation of

(McDonald 2006). In the last section, we reviewed the 3rd-order calculation of matter

power spectrum. Here, the basic assumptions and equations are the same previous section,

but to get the analytic formula for the halo power spectrum, we need one more assumption,

F
(s)
2 (q1, q2) = 17

21
+ 1

2
q̂1 · q̂2

„
q1
q2

+ q2
q1

«
+ 2

7

»
(q̂1 · q̂2)

2 − 1
3

–



Prediction: non-linear matter P(k)



Prediction: Baryon Acoustic Oscillations

Non-linearity distorts BAOs significantly.



Simulation Set I: Low-resolution (faster)

Particle-Mesh (PM) Poisson solver (Ryu et al. 1993)

Cosmological parameters
Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.043,
H0 = 70 km/s/Mpc, σ8 = 0.8, ns = 1.0

Simulation parameters

Box size [Mpc/h]3 nparticle Mparticle(M�) Nrealizations kmax[h Mpc−1]

5123 2563 2.22× 1012 60 0.24
2563 2563 2.78× 1011 50 0.5
1283 2563 3.47× 1010 20 1.4
643 2563 4.34× 109 15 5



Testing convergence with 4 box sizes



Simulation Set II: High-resolution

PMFAST (MPI-parallelized PM) (Merts et al. 2005)

Cosmological parameters (run1)
Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.044,
H0 = 70 km/s/Mpc, σ8 = 0.9, ns = 1.0

Cosmological parameters (run2)
Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.044,
H0 = 70 km/s/Mpc, σ8 = 0.8, ns = 0.96

Simulation parameters

Box size [Mpc/h]3 nparticle Mparticle(M�) Nrealizations

5003 16243 8.10× 109 1
5003 16243 8.10× 109 2



P(k): Analytical Theory vs Simulations



BAO: Analytical Theory vs Simulations



It just works!
(Jeong & Komatsu 2006, ApJ, 651, 619)

A quote from Patrick McDonald (PRD 74, 103512 (2006)):

“(...) this perturbative approach to the galaxy power spectrum
(including beyond-linear corrections) has not to my knowledge actually
been used to interpret real data. However, between improvements in
perturbation theory and the need to interpret increasingly precise
observations, the time for this kind of approach may have arrived

(Jeong & Komatsu, 2006).”



From dark matter to halo

Two Facts
i) Galaxies are biased tracers of the underlying matter distribution.
ii) Galaxies form in dark matter halos.
How is halo biased?

Tracers (dark matter halos, galaxies, etc) do not follow the
distribution of underlying dark matter density field exactly.

In linear theory, they differ only by a constant factor, the linear bias

Ptracer(k) = b2
1Pm(k).

In non-linear theory, bias is non-linear.
Working assumption: The halo formation is a local process.

From matter density to halo density (Gaztanaga & Fry 1993)

ρh(δ) = ρ0 + ρ′0δ +
1

2
ρ′′0 δ2 +

1

6
ρ′′′0 δ3 + ε +O(δ4

1)



The halo power spectrum

(McDonald 2006)

Phh(k) = N + b2
1

[
P (k) +

b2
2

2

∫
d3q

(2π)3
P (q)

[
P (|k− q|)− P (q)

]

+ 2b2

∫
d3q

(2π)3
P (q)P (|k− q|)F (s)

2 (q, k− q)

]

b1, b2, N are unknown parameters that capture detail information
on halo formation.
It is difficult to model them accurately from theory (Smith,
Scoccimarro & Sheth 2007).
Our approach: instead of modeling them, we fit them to match the
observed power spectrum.



Linear Bias Model vs Simulations

Linear bias: Horrible!!



Nonlinear Bias Model vs Simulations



Effects of Non-linear Bias on BAOs

Non-linear biasing is important even on the BAO scales.



Best-fit non-linear bias parameters
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4.2. Nonlinear halo power spectrum in real space

We show the real space halo power spectrum in Figure 4. It compares Phh(k, z) at

z=1, 2, 3, 4, 5 and 5.5 (from bottom to top). For the direct comparison, we also show

the dimensionless power spectrum in Figure 5. As one can clearly see from those figures,

nonlinear halo power spectrum can be accurately modeled by PT, while linear theories fail

to follow the power spectrum measured from the N-body simulations.

In the equation (36), we have three free parameters (b1, b2, and N) which include the

detailed information of halo formation. Instead of modeling those parameters, we fit them

to the resulting N-body power spectrum. Table 1 summarizes the fitting result. Note that

the bias factor for given mass cutoff of halo becomes higher in the higher redshift universe,

because halos which have mass greater than 1011M� are not typical objects in that early

time, and the power spectrum measured from these rare objects is more biased. As a result,

the halo power spectrum in the higher redshift is higher than that of lower redshift.

redshifts b1 b2 N Nshot kmax[h/Mpc]

1 1.001 -0.137 3.126 207.191 0.6

2 1.609 0.0996 127.574 234.138 0.6

3 2.468 0.371 371.512 344.949 1.0

4 3.393 0.808 824.337 565.439 2.1

5 4.637 1.563 2215.663 1208.299 2.1

5.5 5.379 2.138 3835.329 1982.772 2.1

Table 1: The best-fit nonlinear bias parameters, and the constant term, along with the shot

noise for each output redshifts. kmax is the maximum k value I used to fit the bias parameters.

Because of the larger nonlinear bias effects in the higher redshift, the distortion of

baryonic oscillations in the higher redshift is more severe than that in the lower redshift.

Figure 6 shows the effect of nonlinear bias on baryonic oscillations for each redshift. Again,

besides the large scale discrepancy due to the finite box effect, we found that PT calculation

Linear bias b1 increases with redshift.
Non-linear bias b2 also increases with redshift.
At z ∼ 1, non-linear bias reduces power.
Nshot is a Poisson shot noise given by 1/nhalo.
kmax is the wavenumber k included in the fit that gave χ2

red ' 1.



Again, it just works. (Jeong, Komatsu, Iliev & Shapiro,
to be submitted)
However, it is a 3-parameter fit, and an old-saying says “3
parameters can fit everything.”

“With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.” – John von Neumann.

The important question is, “Can we also extract the
correct cosmology?”



Example: Shape of the primordial P (k), ns

Red curve
Fitting the N-body power spectrum with (b1, b2, N) and ns, and marginalize
over the bias parameters.

Blue curve
∆χ2 of ns assuming that we know the non-linear bias parameters completely.



The Remaining Issue: Redshift Space Distortion

Redshift space distortion (z-distortion)
To measure P (k), we need to measure a density field in 3D position
space.

We measure the redshift, z, and calculate the radial separation
between galaxies from c∆z/H(z).

This can be done exactly if there is only the Hubble flow.

Peculiar motion adds a complication.

The peculiar velocity field is not a random field.
∴ Added correlation must be modeled.



From real space to redshift space

In a nut shell, redshift space distorsion is merely an effect due to the
coordinate transformation:

s = r +
v · r̂
H(z)

≡ r

[
1 +

U(r)

r

]

observer at origin

r
<real space>

v

v

observer at origin

s
<redshift space>



Two effects

1 Large-scale coherent flow : “Kaiser effect”
2 Small-scale random motion : “Finger of God effect”



I. Large scale Kaiser effect

real space redshift space

T
o O

bserver
overdensity

1

4

3

2

2

1 3

4

Coherent flow
towards the
overdensity

The galaxies along the line of
sight appear closer to each
other than they actually are.
The radial clustering appears
stronger. −→ increase in
power along the line of sight.



Real space 2D P (k⊥, k‖)



Kaiser effect on 2D Pred(k⊥, k‖)



Non-linear Kaiser power spectrum

Kaiser (1987) is purely linear. We extend it to the 3rd order
perturbation theory.
3rd P (k) in redshift space is given by (Heavens et al. 1998)
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theory is :

P (k) =(1 + fµ2)2P11(k) + 2

∫

d3q

(2π)3
P11(q)P11(|k− q|)

[

R
(s)
2 (q,k− q)

]2

+ 6(1 + fµ2)P11(k)

∫

d3q

(2π)3
P11(q)R

(s)
3 (q,−q,k)

(51)

Here, P11(k) is the linear matter power spectrum, and the subscript (s) means that the

kernel is symmetrized.

3. N-body simulations and analysis method

For computing dark matter power spectrum (in both real and redshift space), we

use the TVD (Ryu et al. 1993) code to simulate the evolution of δ(x, τ ). The TVD code

uses the Particle-Mesh scheme for gravity, and the Total-Variation-Diminishing (TVD)

scheme for hydrodynamics, although we do not use hydrodynamics in our calculations. To

increase the dynamic range of the derived power spectrum and check for convergence of

the results, we use four box sizes, Lbox = 512, 256, 128, and 64 h−1 Mpc, with the same

number of particles, N = 2563. (We use 5123 meshes for doing FFT.) We use the following

cosmological parameters: Ωm = 0.27, Ωb = 0.043, ΩΛ = 0.73, h = 0.7, σ8 = 0.8, and ns = 1.

We output the simulation data at z = 6, 5, 4, 3, 2 and 1 for 512, 256 and 128 h−1 Mpc,

while only at z = 6, 5, 4 and 3 for 64 h−1 Mpc.

We suppress sampling variance of the estimated P (k, z) by averaging P (k, z) from

60, 60, 20, and 15 independent realizations of 512, 256, 128, and 64 h−1 Mpc simulations,

respectively. We calculate the density field on 5123 mesh points from the particle

distribution by the Cloud-In-Cell (CIC) mass distribution scheme. We then Fourier

transform the density field and average |δk(τ )|2 within k −∆k/2 ≤ |k| < k + ∆k/2 over the

angle to estimate P (k, z). Here, ∆k = 2π/Lbox. Finally, we correct the estimated P (k) for

loss of power due to the CIC pixelization effect using the window function calculated from

100 realizations of random particle distributions.

We use the COSMICS package (Bertschinger 1995) to calculate the linear transfer

With the following mathematical functions
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Using Wick theorem, the redshift space power spectrum from the 3rd order perturbation

µ : cosine of line of sight and k.
When µ = 0, k is perp. to the l.o.s..
P (k) agrees with the non-linear matter P (k) in real sapce.
When µ = 1, k is parallel to the l.o.s..



Non-linear redshift space distortion: R
(s)
3
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Where the kernels are :
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Using Wick theorem, the redshift space power spectrum from the 3rd order perturbation
All but the first term disappear when µ = 0.



Prediction: Non-linear Kaiser matter power spectrum



BAO in redshift space: non-linear Kaiser boost



Non-linear Kaiser vs Simulations: An Issue?



Simulated BAOs in redshift space: Power Suppression



II. Small scale Finger of God effect

real space redshift space

T
o O

bserver

1

4

3

2

1

4

3

2

Virial motion in
halo

Now, galaxy 2 and 4 are
farther away from each other
than they actually are. −→
suppression of power along
the line of sight.



FoG effect on 2D Pred(k⊥, k‖)



FoG effect and the pariwise velocity dispersion function

How can we model the FoG effect?
We have to know the velocity distribution within halos.

Is it a Gaussian? (Peacock 1992)

e
−k2

‖σ
2
v

A better approximation (Ballinger, Peacock & Heavens 1996)

1/(1 + k2
‖σ

2
v)

which corresponds to an exponential velocity distribution.



L.o.s. velocity distribution is close to exponential than
Gaussian

Line of sight velocity distribution calculated from N-body simulations.
(Scoccimarro, 2004)

velocity dispersion. Fisher [20] also claims that in
the linear regime the relationship between ξs and ξ
can be reduced to the standard streaming model,
i.e. as in Eq. (12) with 1 + ξ’s replaced by ξ’s [see
his Eq. (26)]. This is incorrect, it suffices to see
that if this were true all terms in ξs would be pro-
portional to ξ, in particular, such a result does not
admit redshift distortions generated by correlated
velocity fluctuations (where P depends on r) in an
unclustered distribution (ξ = 0).

The power spectrum and two-point correlation
function in redshift space can be written in a similar
form,

Ps(k) =

∫

d3r

(2π)3
e−ik·r

[

Z(λ, r)− 1
]

, (13)

ξs(s‖, s⊥) =

∫

dr‖dγ

2π
e−iγ(r‖−s‖)

[

Z(λ, r)− 1
]

,

(14)

where λ = ifkz, ifγ respectively and

Z(λ, r) ≡ [1 + ξ(r)] M(λ, r). (15)

It is important to note that the two-point corre-
lation function is affected by redshift distortions for
all configurations, even those perpendicular to the
line of sight, since they are coming from different
scales through the dependence of P on r‖. It is how-
ever possible to project out redshift distortions by
integrating along the line of sight,

ξp(r⊥) ≡
2

r⊥

∫ ∞

0

ds‖ ξs(s‖, r⊥)

=
2

r⊥

∫ ∞

0

dr‖ ξ(
√

r2‖ + r2⊥)

= π

∫

P (k)
J0(kr⊥)

kr⊥
d3k, (16)

which sets γ = 0 in Eq. (14). This is only true in
the plane-parallel approximation, where the concept
of “line of sight” is applicable. On the other hand,
the redshift-space power spectrum has the nice prop-
erty, in the plane-parallel approximation, that trans-
verse modes are unaffected by redshift distortions (a
wave in the k⊥ direction is uniform in z and thus

FIG. 1: The parallel to the line of sight pairwise velocity
PDF at redshift z = 0 for pairs separated by distance r,
measured in the N-body simulations. In the bottom left
panel, the discontinuous at the origin PDF (thin solid
line) corresponds to that given by the dispersion model,
Eq. (19) (ignoring the delta function at the origin). In
the bottom right panel, the narrow distribution (thin
solid line) corresponds to the prediction of linear dy-
namics, Eq. (44).

unperturbed by the real-to-redshift space mapping),
therefore Ps(kz = 0, k⊥) = P (k⊥).

Figure 1 shows the pairwise velocity distribution
P for pairs separated by distance r along the line
of sight, measured from the VLS simulation of the
Virgo consortium [34]. This has 5123 dark mat-
ter particles in a 479 Mpc h−1 box with a linear
power spectrum corresponding to Ωm = 0.3 (includ-
ing Ωb = 0.04 in baryons), ΩΛ = 0.7, h = 0.7 and
σ8 = 0.9. Due to the large number of pairs (in
our measurements we use 32 × 1012 total pairs at
scales between 0.1 and 300 Mpc h−1) and volume of
the simulation, the statistical uncertainties are small
enough that we do not plot error bars for clarity. On
the other hand, one must keep in mind that neigh-
boring points, separated by only 20 km/s, must be

5

Ansatz:

Pred(k‖, k⊥, z) −→
Pred(k‖, k⊥, z)

1 + k2
‖σ

2
v

A Historical Note
An exponential velocity
distribution being a better
description than a Gaussian
has been found for the first
time by Peebles (1976) and
confirmed by Davis and
Peebles (1983).



2D P (k) in redshift space, 512 h−1 Mpc box



2D P (k) in redshift space, 256 h−1 Mpc box



2D P (k) in redshift space, 128 h−1 Mpc box



BAOs in Redshift Space with FoG vs Simulations



Best-fit σ2
v parameters

– 41 –

redshift k-range (h/Mpc) σ2
v(Eq.56) [Mpc/h]2 σ2

v fit [Mpc/h]2 χ2
red d.o.f.

6 k < 0.24 1.1530 0.4964±0.1151 1.102 318

k < 0.5 1.1686 0.1769±0.0279 1.152 345

k < 1.4 1.1574 0.1009±0.0034 1.580 667

5 k < 0.24 1.5778 0.6096±0.1156 1.091 318

k < 0.5 1.5989 0.3013±0.0284 1.149 345

k < 1.4 1.5832 0.2166±0.0039 1.502 667

4 k < 0.24 2.2427 0.8306±0.1171 1.086 318

k < 0.5 2.2707 0.5895±0.0294 1.144 345

k < 1.4 2.2506 0.5155±0.0049 1.411 667

3 k < 0.24 3.5667 1.3945±0.1205 1.079 318

k < 0.5 3.4785 1.4445±0.0333 1.155 345

k < 1.2 3.5427 1.5606±0.0118 1.442 494

2 k < 0.24 6.0760 3.4408±0.1338 1.144 318

k < 0.33 6.1519 4.2194±0.1553 1.053 154

k < 1.4 6.0887 5.0000±0.0167 2.431 667

1 k < 0.15 12.8654 10.2650±0.8443 1.149 131

k < 0.5 12.6851 19.8754±0.0975 2.292 345

k < 1.4 12.6543 23.8262±0.0598 10.335 667

Table 2: The best-fit σ2
v parameter for 6 different redshifts and 3 different kmax’s for each

redshift. Note that in most of cases, kmax’s are set by the resolution of each simulation boxes

: kmax = 0.24, 0.5 , 1.4 h Mpc−1 for 512, 256, 128 h−1 Mpc, respectively. However, when

kmax set by the resolution is higher than the kmax we get from the valid k region of the

nonliner PT in real space, we choose the later. Fitting for k < 1.4 at z = 2, and k < 0.5,

k < 1.4 at z = 1 are done to show the failure of the fitting in the highly nonlinear region.

Note that σ2
v from equation (56) is always larger than the best-fit value when PT works well.



Cosmology with High-redshift Galaxy Survey

What science can we do with the planned high-z galaxy surveys,
coupled with the accurate theoretical predictions that we have
presented?

Nature of dark energy
Physics of Inflation
Neutrino Mass

to mention a few.



Expansion history determines structure

Power Spectrum:
Relative structure on various size scales



Expansion history determines structure

Models produce
similar, but distinct, Power Spectra

Need < few % measurement accuracy



Expansion history determines structure

Models produce
similar, but distinct, Power Spectra

Need < few % measurement accuracy

CIP will measure the Power Spectrum
with an accuracy of ~ 1%



Expansion history determines structure



Shape of the Power Spectrum
constrains Inflation

Values of “running” and
“tilt” predicted by all

current single scalar field
Inflation models



Shape of the Power Spectrum
constrains Inflation

WMAP (3-yr) + SDSS (LRG)
observations have narrowed

the range of acceptable values



Shape of the Power Spectrum
constrains Inflation

Planck and CIP will achieve
comparable 2σ limits on ns and
αs, BUT AT SIGNIFICANTLY

DIFFERENT k ranges



•  CIP, alone, can measure the Power Spectrum on small spatial scales with
sufficient accuracy to greatly improve constraints on Inflation models

•  Combining CIP with CMB measurements samples the broadest range of
spatial scales and sets the tightest constraints on Inflation models

Shape of the Power Spectrum
Constrains Inflation

+’s mark the tilt and running
predictions of single scalar-field
models of Inflation that produce a flat
(or nearly flat) Universe

2σ constraint ellipse from
   WMAP (3-yr) + SDSS (LRG),
   after Tegmark et al. 2006



Neutrino Mass •Free-streaming of
non-relativistic
neutrinos suppress
the amplitude of
the matter power
spectrum at small
scales.

•The total
suppression
depends only on
the total neutrino
mass.

•The free-
streaming scale
depends on
individual
neutrinos mass.



Parameter Forecast

•CIP, in combination with the CMB data from Planck, will
determine the tilt and running to a few x 10-3 level.

•The running predicted by a very simple inflationary model (a
massive scalar field with self-interaction) predicts the running of
(0.8-1.2) x 10-3, which is not very far away from CIP’s sensitivity.

•More years of operation, or a larger FOV may allow us to
measure the running from the simplest inflationary models.

•The limit on neutrino masses will be 20-40 times better than the
current limit.

Takada, Komatsu & Futamase, PRD 73, 083520 (2006) 

HETDEX
CIP



Conclusion

We are 3/4 of the way through the theory of P (k) for high-z
galaxy surveys.

O Non-linear matter evolution
O Non-linear bias
O Non-linear Kaiser effect
4 Finger of God effect

“Almost ready” for interpreting the data from high-z surveys
(HETDEX, WFMOS & CIP)

A better model for the Finger of God effect beyond an ansatz is
required for extracting more cosmological information.
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