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Why Study Non-Gaussianity?
• Who said that CMB must be Gaussian?

– Don’t let people take it for granted.
– It is rather remarkable that the distribution of the observed 

temperatures is so close to a Gaussian distribution.
– The WMAP map, when smoothed to 1 degree, is entirely 

dominated by the CMB signal.
• If it were still noise dominated, no one would be surprised that the 

map is Gaussian.
– The WMAP data are telling us that primordial fluctuations 

are pretty close to a Gaussian distribution.
• How common is it to have something so close to a Gaussian 

distribution in astronomy? 

– It is not so easy to explain why CMB is Gaussian, 
unless we have a compelling early universe 
model that predicts Gaussian primordial 
fluctuations: e.g., Inflation. 2



How Do We Test Gaussianity 
of CMB?
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One-point PDF from WMAP

• The one-point distribution of CMB temperature 
anisotropy looks pretty Gaussian.
– Left to right: Q (41GHz), V (61GHz), W (94GHz).

• We are therefore talking about quite a subtle 
effect.

Spergel et al. (2007)
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Finding NG.• Two approaches to
• I. Null (Blind) Tests / “Discovery” Mode

– This approach has been most widely used in the literature.
– One may apply one’s favorite statistical tools (higher-order 

correlations, topology, isotropy, etc) to the data, and show that the data 
are (in)consistent with Gaussianity at xx% CL.

– PROS: This approach is model-independent. Very generic.
– CONS: We don’t know how to interpret the results.

• “The data are consistent with Gaussianity” --- what physics do we learn 
from that? It is not clear what could be ruled out on the basis of this kind of 
test.

• II. “Model-testing,” or “Strong Prior” Mode
– Somewhat more recent approaches.
– Try to constrain “Non-gaussian parameter(s)” (e.g., fNL)
– PROS: We know what we are testing, we can quantify our constraints, 

and we can compare different data sets.
– CONS: Highly model-dependent. We may well be missing other 

important non-Gaussian signatures.
5



Cosmology and Strings: 
6 Numbers

• Successful early-universe models must 
satisfy the following observational 
constraints:
– The observable universe is nearly flat, |ΩK|

<O(0.02)
– The primordial fluctuations are 

• Nearly Gaussian, |fNL|<O(100)
• Nearly scale invariant, |ns-1|<O(0.05), |dns/dlnk|

<O(0.05)
• Nearly adiabatic, |S/R|<O(0.2) 6



• A “generous” theory would make 
cosmologists very happy by producing 
detectable primordial gravity waves 
(r>0.01)…
– But, this is not a requirement yet. 
– Currently, r<O(0.5)
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Gaussianity vs Flatness
• We are generally happy that geometry of our observable 

Universe is flat.
– Geometry of our Universe is consistent with a flat geometry to 

~2% accuracy at 95% CL. (Spergel et al., WMAP 3yr)

• What do we know about Gaussianity?

– Parameterize non-Gaussianity: Φ=ΦL+fNLΦL2
• ΦL~10-5 is a Gaussian, linear curvature perturbation in the matter era

– Therefore, fNL<100 means that the distribution of Φ is consistent 
with a Gaussian distribution to ~100×(10-5)2/(10-5)=0.1% accuracy 
at 95% CL.

• Remember this fact: “Inflation is supported more by 
Gaussianity than by flatness.” 8



How Would fNL Modify PDF? 
One-point PDF is not 
useful for measuring 
primordial NG. We need 
something better:

•Three-point Function

•Bispectrum 
•Four-point Function

•Trispectrum

•Morphological Test

•Minkowski Functionals
9



Bispectrum of Primordial 
Perturbations

• Bispectrum is the Fourier transform of 
three-point correlation function.
– Cf. Power spectrum is the Fourier 

transform of two-point correlation function.
• Bispectrum(k1,k2,k3)=<Φ(k1)Φ(k2)Φ(k3)>

where
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Komatsu & Spergel (2001)

(cyclic)
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Bispectrum of CMB
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Komatsu & Spergel (2001)



Bispectrum Constraints
Komatsu et al. (2003); Spergel et al. (2007)

(1yr)

(3yr)WMAP First Year

-58 < fNL < +134 (95% CL)

-54 < fNL < +114 (95% CL)
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Trispectrum of Primordial 
Perturbations

• Trispectrum is the Fourier transform of 
four-point correlation function.

• Trispectrum(k1,k2,k3,k4)
            =<Φ(k1)Φ(k2)Φ(k3)Φ(k4)>
which can be sensitive to the higher-
order terms:
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Okamoto & Hu (2002); Kogo & Komatsu (2006)
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Trispectrum of CMB

alphal(r)=2blNL(r); betal(r)=blL(r);



Measuring Trispectrum
• It’s pretty painful to measure all the 

quadrilateral configurations.
– Measurements from the COBE 4-year data 

(Komatsu 2001; Kunz et al. 2001)
• Only limited configurations measured 

from the WMAP 3-year data
– Spergel et al. (2007)

• No evidence for non-Gaussianity, but fNL 
has not been constrained by the 
trispectrum yet. (Work to do.) 16



Trispectrum: Not useful for WMAP, 
but maybe useful for Planck, if fNL is 

greater than ~50 
• Trispectrum (~ fNL

2) 

• Bispectrum (~ fNL)

Kogo & Komatsu (2006)
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V2: Euler Characteristic

The number 
of hot spots 
minus cold 
spots.

V1: Contour LengthV0:surface area
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Minkowski Functionals (MFs)



Analytical  formulae of MFs

Gaussian term

In weakly non-Gaussian fields (σ0<<1) , the non-
Gaussianity in MFs is characterized by three skewness 
parameters S(a).

Perturbative formulae of MFs (Matsubara 2003)

leading order of Non-Gaussian term

Hikage, Komatsu &  Matsubara (2006)



3 “Skewness Parameters”
• Ordinary skewness

• Second derivative

• (First derivative)2 x Second derivative

Matsubara (2003)



Analytical predictions of bispectrum at 
fNL=100 (Komatsu & Spergel  2001) Skewness parameters as a function 

of a Gaussian smoothing width θs

S(0): Simple average of 
bl1l2l3

S(1): l2 weighted average

S(2): l4 weighted average



Note: This is Generic.
• The skewness parameters are the 

direct observables from the Minkowski 
functionals.

• The skewness parameters can be 
calculated directly from the bispectrum.

• It can be applied to any form of the 
bispectrum!
– Statistical power is weaker than the full 

bispectrum, but the application can be broader 
than a bispectrum estimator that is tailored for a 
specific form of non-Gaussianity, like fNL.



Surface area Contour Length Euler Characteristic

Comparison of MFs  between 
analytical predictions and 
non-Gaussian simulations 
with fNL=100 at different 
Gaussian smoothing scales, θs

Analytical formulae agree 
with non-Gaussian 
simulations very well. 

Simulations are done for 
WMAP.

Comparison of analytical formulae with 
Non-Gaussian simulations
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Hikage et al. (2007)



MFs from WMAP
(1yr)

Komatsu et al. (2003); Spergel et al. (2007); Hikage et al. (2007)

(3yr)

Area Contour Length Euler 
Characteristic

fNL < +117 (95% CL) -70 < fNL < +90 (95% CL)
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Gaussianity vs Flatness: 
Future

• Flatness will never beat Gaussianity.
– In 5-10 years, we will know flatness to 0.1% level.
– In 5-10 years, we will know Gaussianity to 0.01% 

level (fNL~10), or even to 0.005% level (fNL~5), at 
95% CL.

• However, a real potential of Gaussianity test 
is that we might detect something at this 
level (multi-field, curvaton, DBI, ghost cond., 
new ekpyrotic…)
– Or, we might detect curvature first?
– Is 0.1% curvature interesting/motivated?
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Confusion about fNL (1): Sign
• What is fNL that is actually measured 

by WMAP?
• When we expand Φ as Φ=ΦL+fNLΦL

2, Φ is Bardeen’s 
curvature perturbation (metric space-space), ΦH, in the 
matter dominated era.
– Let’s get this stright: Φ is not Newtonian potential (which is metric 

time-time, not space-space)
– Newtonian potential in this notation is −Φ. (There is a minus sign!)
– In the large-scale limit, temperature anisotropy is ΔT/T=−(1/3)Φ.
– A positive fNL results in a negative skewness of ΔT.

• It is useful to remember the physical effects: 
fNL positive 
= Temperature skewed negative (more cold spots)
= Matter density skewed positive (more objects) 26



Confusion about fNL (2): 
Primordial vs Matter Era

• In terms of the primordial curvature 
perturbation in the comoving gauge, R, 
Bardeen’s curvature perturbation in the matter 
era is given by ΦL=+(3/5)RL at the linear level 
(notice the plus sign).

• Therefore, R=RL+(3/5)fNLRL
2 

• There is another popular quantity, ζ=+R. 
(Bardeen, Steinhardt & Turner (1983); Notice 
the plus sign.)

ζ=ζL+(3/5)fNLζL
2  

x R=RL−(3/5)fNLRL
2

x R=RL+fNLRL
2

x ζ=ζL−(3/5)fNLζL
2
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Confusion about fNL (3): 
Maldacena Effect 

• Juan Maldacena’s celebrated non-
Gaussianity paper (Maldacena 2003) uses 
the sign convention that is minus of that in 
Komatsu & Spergel (2001):
– +fNL(Maldacena) = −fNL(Komatsu&Spergel)

• The result: cosmologists and high-energy 
physicists have often been using different 
sign conventions.

• It is always useful to ask ourselves, “do we 
get more cold spots in CMB for fNL>0?” 
– If yes, it’s Komatsu&Spergel convention. 
– If no, it’s Maldacena convention. 28



Positive fNL = More Cold Spots

€ 

Φ x( ) =ΦG x( ) + fNLΦG
2 x( )Simulated temperature maps from 

fNL=0 fNL=100

fNL=1000 fNL=5000

29



Journey For Measuring fNL

• 2001: Bispectrum method proposed and developed 
for fNL (Komatsu & Spergel)

• 2002: First observational constraint on fNL from the 
COBE 4-yr data (Komatsu, Wandelt, Spergel, Banday 
& Gorski)
– -3500 < fNL < +2000 (95%CL; lmax=20)

• 2003: First numerical simulation of CMB with fNL 
(Komatsu) 

• 2003: WMAP 1-year (Komatsu, WMAP team)
– -58 < fNL < +134 (95% CL; lmax=265)

30



Journey For Measuring fNL

• 2004: Classification scheme of triangle 
dependence proposed (Babich, 
Creminelli & Zaldarriaga)
– There are two “fNL”: the original fNL is called 

“local,” and the new one is called 
“equilateral.”  

• 2005: Fast estimator for fNL(local) 
developed (“KSW” estimator; Komatsu, 
Spergel & Wandelt)

l1

l2
l3

Locall1

l2

l3

Eq.
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Journey For Measuring fNL

• 2006: Improvement made to the KSW method, 
and applied to WMAP 1-year data by Harvard 
group (Creminelli, et al.)
– -27 < fNL(local) < +121 (95% CL; lmax=335)

• 2006: Fast estimator for fNL(equilateral) 
developed, and applied to WMAP 1-year data 
by Harvard group (Creminelli, et al.)
– -366 < fNL(equilateral) < +238 (95% CL; lmax=405)
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Journey For Measuring fNL

• 2007: WMAP 3-year constraints
– -54 < fNL(local) < +114 (95% CL; lmax=350) 

(Spergel, WMAP team)
– -36 < fNL(local) < +100 (95% CL; lmax=370) 

(Creminelli, et al.)
– -256 < fNL(equilateral) < +332 (95% CL; 

lmax=475) (Creminelli, et al.)
• 2007: We’ve made further improvement to 

Harvard group’s extension of the KSW method; 
now, the estimator is very close to optimal 
(Yadav, Komatsu, Wandelt) 33



Latest News on fNL
• 2007: Latest constraint from the WMAP 3-

year data using the new YKW estimator
– +27 < fNL(local) < +147 (95% CL; lmax=750) 

(Yadav & Wandelt, arXiv:0712.1148)
– Note a significant jump in lmax.
– A “hint” of fNL(local)>0 at more than two σ? 

• Our independent analysis showed a 
similar level of fNL(local), but no 
evidence for fNL(equilateral).

There have been many claims of 
non-Gaussianity at the 2-3 σ. 

This is the best physically motivated one, 
and will be testable with more data. 34



WMAP: Future Prospects
• Could more years of data from WMAP yield a 

definitive answer? 
– 3-year latest [Y&W]: fNL(local) = 87 +/- 60 (95%)

• Projected 95% uncertainty from WMAP
– 5yr: Error[fNL(local)] ~ 50
– 8yr: Error[fNL(local)] ~ 42
– 12yr: Error[fNL(local)] ~ 38

An unambiguous (>4σ) detection of 
fNL(local) at this level with the future 

(e.g., 8yr) WMAP data could be a 
truly remarkable discovery.
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More On Future Prospects

• CMB: Planck (temperature + polarization): 
fNL(local)<6 (95%)
– Yadav, Komatsu & Wandelt (2007)

• Large-scale Structure: e.g., ADEPT, CIP: 
fNL(local)<7 (95%); fNL(equilateral)<90 (95%)
– Sefusatti & Komatsu (2007)

• CMB and LSS are independent. By combining 
these two constraints, we get fNL(local)<4.5. 
This is currently the best constraint that we 
can possibly achieve in the foreseeable future 
(~10 years)
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A Comment on Jeong&Smoot

• Jeong&Smoot (arXiv:0710.2371) claim 
significant detections of fNL from the WMAP 3-
yr data, +23<fNL(local)<+75 (95% CL)

• Their analysis is based on one-point 
distribution of temperature, which is mostly 
measuring skewness. 

• However, we know that it is not possible to 
see fNL at this level from just skewness of the 
WMAP data (as proved by Komatsu&Spergel 
2001). So, what is going on?
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Here is the Reason…

• The biggest issue is that their simulations of 
CMB are not correct. 
– They completely ignored pixel-to-pixel correlation 

of the CMB signal.
– In other words, they simulated “CMB” as a pure 

random, white noise (just like detector noise).
– Their simulation therefore underestimated the 

uncertainty in their fNL grossly; the 95% error 
should be more like 160 rather than 13, which is 
what they report.
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If fNL is large, 
what are the 
implications?
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Three Sources of Non-Gaussianity
• It is important to remember that fNL receives 

three contributions:
1. Non-linearity in inflaton fluctuations, δφ

–    Falk, Rangarajan & Srendnicki (1993)
–    Maldacena (2003)

2. Non-linearity in Φ-δφ relation
– Salopek & Bond (1990; 1991)
– Matarrese et al. (2nd order PT papers)
– δN papers; gradient-expansion papers

3. Non-linearity in ΔT/T-Φ relation
– Pyne & Carroll (1996)
– Mollerach & Matarrese (1997) 40



δφ∼ gδφ(η+mpl
-1fηη2)

Φ∼ mpl
-1gΦ(δφ

                 +mpl
-1fδφδφ2)

ΔT/T~ gT(Φ+fΦΦ2)

ΔT/T~gT[ΦL+(fΦ+gΦ−1fδφ+gΦ−1gδφ−1fη)ΦL
2]

Komatsu, astro-ph/0206039

fNL ~ fΦ + gΦ
−1fδφ + gΦ

−1gδφ
−1fη ∼ Ο(1) + Ο(ε) in slow-roll

•gδφ=1
•fη∼Ο(ε1/2) 

in slow-roll

•gΦ~O(1/ε1/2)
•fδφ∼Ο(ε1/2) 

in slow-roll

•gΤ=−1/3
•fΦ∼Ο(1) 

for Sachs-
Wolfe
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1. Generating Non-Gaussian δφ 
• You need cubic interaction terms (or 

higher order) of fields.
– V(φ)~φ3: Falk, Rangarajan & Srendnicki 

(1993) [gravity not included yet]
– Full expansion of the action, including 

gravity action, to cubic order was done a 
decade later by Maldacena (2003)
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2. Non-linear Mapping
• The observable is the curvature 

perturbation, R. How do we relate R to 
the scalar field perturbation δφ?

• Hypersurface transformation (Salopek & 
Bond 1990); a.k.a. δN formalism.

43

(1)Scalar field perturbation
(2)Evolve the scale factor, 
a, until φ matches φ0

(3)R=ln(a)-ln(a0)



Result of Non-linear Mapping
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Komatsu, astro-ph/0206039

Expand R to the quadratic order in δφ:

[For Gaussian δφ]

[N is the Lapse function.]

For standard slow-roll inflation models, this is of order 
the slow-roll parameters, O(0.01).



Multi-field Generalization

45

Lyth & Rodriguez (2005)

Then, again by expanding R to the quadratic order in 
δφA, one can find fNL for the multi-field case.

Example: the curvaton scenario, in which the second 
derivative of the integrand with respect to φ2, the 
“curvaton field,” divided by the square of the first 
derivative is much larger than slow-roll param.

A
A

AA
AA

A

A=1,..., # of fields in the system



3. Curvature Perturbation to CMB
• The linear Sachs-Wolfe effect is given 

by dT/T = -(1/3)ΦH = +(1/3)ΦA
• The non-linear SW effect is

where time-dependent terms (called the 
integrated SW effect) are not shown. (Bartolo 
et al. 2004)

• These terms generate fNL of order unity.
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Implications of large fNL 

• fNL never exceeds 10 in the conventional 
picture of inflation in which
– All fields are slowly rolling, and
– All fields have the canonical kinetic term.

• Therefore, an unambiguous detection of 
fNL >10 rules out most of the existing 
inflation models.

• Who would the “survivors” be?
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3 Ways to Get Larger Non-Gaussianity 
from Early Universe

1. Break slow-roll: fδφ, fη >> 1

• Features (steps, bumps…) in V(φ)
• Kofman, Blumenthal, Hodges & Primack 

(1991); Wang & Kamionkowski (2000); 
Komatsu et al. (2003); Chen, Easther & Lim 
(2007)

• Ekpyrotic model, old and new
• Buchbinder, Khoury & Ovrut (2007); Koyama, 

Mizuno, Vernizzi & Wands (2007)

fNL ~ fΦ + gΦ
−1fδφ + gΦ

−1gδφ
−1fη
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2. Amplify field interactions: fη >> 1

• Often done by non-canonical kinetic terms
• Ghost inflation

• Arkani-Hamed, Creminelli, Mukohyama & Zaldarriaga 
(2004) 

• DBI Inflation
• Alishahiha, Silverstein & Tong (2004)

• Any other models with a low effective sound 
speed of scalar field because fη ~1/(cs)2

• Chen, Huang, Kachru & Shiu (2004); Cheung, 
Creminelli, Fitzpatrick, Kaplan & Senatore (2007)

3 Ways to Get Larger Non-Gaussianity 
from Early Universe

fNL ~ fΦ + gΦ
−1fδφ + gΦ

−1gδφ
−1fη
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3. Suppress the perturbation conversion 
factor, gΦ, gδφ << 1

• Generate curvature perturbations from 
isocurvature (entropy) fluctuations with an 
efficiency given by g.
• Linde & Mukhanov (1997); Lyth & Wands 

(2002)
• Curvaton predicts  gΦ∼Ωcurvaton which can be 

arbitrarily small
• Lyth, Ungarelli & Wands (2002)

3 Ways to Get Larger Non-Gaussianity 
from Early Universe

fNL ~ fΦ + gΦ
−1fδφ + gΦ

−1gδφ
−1fη
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Subtlety: Triangle Dependence

• Remember that there are two fNL

– “Local,” which has the largest amplitude in 
the squeezed configuration

– “Equilateral,” which has the largest 
amplitude in the equilateral configuration

• So the question is, “which model gives 
fNL(local), and which fNL(equilateral)?”

LocalEq.
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Classifying Non-Gaussianities 
in the Literature

• Local Form
– Ekpyrotic models 
– Curvaton models 

• Equilateral Form
– Ghost condensation, DBI, low speed of 

sound models
• Other Forms

– Features in potential, which produce large 
non-Gaussianity within narrow region in l
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Classifying Non-Gaussianities 
in the Literature

• Local Form
– Ekpyrotic models 
– Curvaton models 

• Equilateral Form
– Ghost condensation, DBI, low speed of 

sound models
• Other Forms

– Features in potential, which produce large 
non-Gaussianity within narrow region in l

53

•Is any of these a winner?
•Non-Gaussianity may tell us 
soon. We will find out!



Summary
• Since the introduction of fNL, the 

research on non-Gaussianity as a probe 
of the physics of early universe has 
evolved tremendously.

• I hope I convinced you that fNL is as 
important a tool as ΩK, ns, dns/dlnk, and 
r, for constraining inflation models.

• In fact, it has the best chance of ruling 
out the largest population of models...
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Concluding Remarks
• Stay tuned: WMAP continues to 

observe, and Planck will soon be 
launched.

• Non-Gaussianity has provided 
cosmologists and string theorists with a 
unique opportunity to work together.

• For me, this is one of the most 
important contributions that fNL has 
made to the community.
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