BAのを越える

~Beyond BAO~

小松英一郎(テキサス大学オースティン校) 宇宙構造形成の理論研究とその進展その2 東大本郷、2008年6月12日

紹介する論文

- Donghui Jeong & EK, ApJ, 651, 619 (2006)
- Donghui Jeong & EK, arXiv:0805.2632
- Masatoshi Shoji, Donghui Jeong & EK, arXiv:0805.4238 • Jeong, Sefusatti & Komatsu (準備中)

なぜBAOか:30秒で

- 距離(Angular Diameter Distance, D_A(z))が測れる
- 宇宙の膨張率(Hubble Rate, H(z))が測れる
- ●距離と膨張率。宇宙論をやる上で、これほど基本 的な量はない。

天球方向はD_A(z)視線方向はH(z)

SDSS LRGサンプル から求めた2次元の 2 点相関関数 (Okumura et al. 2007)

 $\theta = d_s(z_{BAO})/D_A(z)$

なぜBAOを越えたいか

- BAOは、観測できる銀河パワースペクトルの、 ほんの一部の情報しか使っていない!
- BAOはz~1020の音波の地平線を標準ものさし (Standard Ruler) として使っている。
- しかし、他にもStandard Rulerはある。
 - Matter-radiation Equality時のホライズンサイズ
 - Silk dampingのサイズ

別に新しい事は言っていない

- k_{eq}は、これまで30年に渡って大規模構造を研究してきた人たちが測定してきたもの。
- Shape Parameterと呼ばれてきた。記号は「。
- 「はk_{eq}/hに比例する。
 - Silk dampingの効果は、比例係数に含まれる。
 - BAOよりも遥かに測りやすい!

WMAPとStandard Ruler

- WMAP 5-year dataのみで、BAOのスケール d_s(z_{BAO}), Equalityのスケールk_{eq}, Silk dampingのスケー ルk_{silk}は良く決まる。w≠-I, Ω_k≠0としても、
- $d_s(z_{BAO}) = 153.4^{+1.9} 2.0 \text{ Mpc}(z_{BAO} = 1019.8 \pm 1.5)$
- 4.6% $k_{eq} = (0.975^{+0.044} 0.045) \times 10^{-2} Mpc^{-1} (z_{eq} = 3198^{+145} 1.46)$
- **2.3%** $k_{silk} = (8.83 \pm 0.20) \times 10^{-2} \text{ Mpc}^{-1}$
 - Planckの精度は、これらの10倍良い。

- BAOvs全部:比べてみました
- BAOのみ使った場合に比
 べ、全部の情報を使う
 と、D_A, Hともに決定精度
 は2倍以上向上する。
- D_A-Hの平面上では、楕円
 の大きさがI/4以下に。

H/H bestfit=1.000

HETDEXのデータ解析で

BAOのみ使うと

● D_Aを2.1%, Hを2.6%の精度で測定

• 相関係数は0.43

全部使うと

● D_Aを0.96%、Hを0.80%の精度で測定

● 相関係数は-0.79

Illuminating the Darkness

News

10 Jan 2008

New Instrument, Telescope Upgrades Enable Pioneering Dark Energy Experiment

27 Apr 2006

McDonald Observatory Receives \$5M Challenge Grant to Study Elusive Dark Energy

"Dark energy is not only terribly important for astronomy, it's the central problem for physics. It's been the bone in our throat for a long time."

> Steven Weinberg Nobel Laureate University of Texas at Austin

Dark Energy

HETDEX

What is Dark Energy?

Dark energy is a term used to describe our lack of understanding of how the universe works on the largest scales. It may be a "repulsive" force that is causing the universe to expand faster as it ages, a discrepancy in the laws of gravity, or some other phenomenon. More >

THEORY: Vacuum Energy, or Einstein's Blunder

THEORY: New Physics, or Particles and Fields

THEORY: Flawed Gravity, or Relaxing the Grip

Video

Gary Hill, HETDEX Project Scientist, explains how astronomers will look for dark energy when they're not sure what it looks like. Play video

HETDEX? <u>www.hetdex.org</u>を見てください。

Glossary

Vacuum energy

A possible explanation for dark energy. First proposed by Albert Einstein to bring his equations into balance with the thenobserved universe, it proposes that space itself produces a form of energy, known as the cosmological constant, that causes the universe to accelerate faster as it ages. Current models show that the observed dark energy is far too weak to be accounted for by theories of the

Media Gallery

Find more images, video, podcasts in the gallery.

全部使えば予算の有効活用

- 全部の情報を使えば、BAOのみのサーベイで4倍 大きいサーベイ体積を稼いだ事と等しい。
- 積分時間で4倍のセービング!

されどBAO

● では、なぜ今、世界中で、猫も杓子もBAO, BAOと 言うのか?

の非線形効果

非線形効果

• 非線形,非線形,非線形!

I. 非線形密度揺らぎ

- 2. 非線形銀河バイアス
- 3. 非線形固有速度

Seo, Siegel, Eisenstein & White (2008) Dan Eisenstein日く

 BAOのフェイズは、非線形 0.8 成長があっても、そんなに 0.6 ズレない (%) $\alpha(z) - 1$ 0.4 ズレても補正可能 0.2 ● z=0.3で0.54%のズレ 0 -0.2 ● z=1.5で0.25%のズレ

Takada, Komatsu & Futamase (2006) 全部使いたい理由:その2

 パワースペクトルの形を全部使えば、D_AとHの エラーを減らせるだけでなく、

インフレーション理論を制限できて、

ニュートリノの質量や世代数が測れる

だから、BAOだけ使うのはもったいない

非線形効果をどう理解する?

• 非線形,非線形,非線形!

I. 非線形密度揺らぎ

2. 非線形銀河バイアス

3. 非線形固有速度

ふ意的要素のない、数学
 モデルが欲しい!

非線形効果を理解する

ソリッドな数学モデル:宇宙論的摂動論

- 線形摂動理論(揺らぎの)次)の正しさは、 観測的に立証済み。(WMAPを見よ!)
- 同じ方程式系をより高次まで展開。
- 3次の摂動理論

3次の摂動論は新しい?

- 新しくない。そこそこ歴史のある分野 (25年以上)
- 1990年代に勢力的に研究が進んだ。
 - 日本のお家芸でもあった。須藤さん、松原さん、 樽家さん、富田さん、瀬戸さん、立川くん、、、
- ところが、これまで観測データに適用されず、最近まで完全に忘れられていた。なぜだろうか?

3次の摂動論は新しい?

● 現在データのあるz~0の宇宙では、非線形が強すぎて と見なされ、あまり役に立たなかった・・・

「あんなものが役に立つの?」

- 摂動論が完全に破綻する。摂動論は理論的なオモチャ
- 佐々木節さん (Suto & Sasaki 1991を回想して)

なぜ今、摂動論なのか?

- 時代は変わった。
- 技術の進歩により、銀河のサーベイ観測が**高赤方偏移** (z>l) まで可能となった。
- そして今、そのようなサーベイ観測が強く求められて

いる。

● z>lでは非線形性は弱く、摂動論が使えるはず!

解くべきは3つの方程式 バリオンの圧力が無視できるような大きなスケー

ルのみ考える。

 粒子のシェルクロッシングは無視する。すなわ ち、粒子の速度場は回転を持たない:rotV=0.

• 解くべき方程式は、 $\dot{\delta} +
abla \cdot [(1 + \delta)v] = 0$

 $\dot{\boldsymbol{v}} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{a}{2} \boldsymbol{v} - \nabla \phi$ $\nabla^2 \phi = 4\pi G a^2 \bar{\rho} \delta$

フーリエ変換すると、

 $\delta(\mathbf{k},\tau) + \theta(\mathbf{k},\tau)$ $= -\int \frac{d^{3}k_{1}}{(2\pi)^{3}} \int d^{3}k_{2}\delta_{D}(\mathbf{k}_{1} + \mathbf{k}_{2})$ $\dot{\theta}(\mathbf{k},\tau) + \frac{\dot{a}}{a}\theta(\mathbf{k},\tau) + \frac{3\dot{a}^2}{2a^2}\Omega_{\rm m}(\tau)\delta(\mathbf{k},\tau)$

• ここで、 $\theta = \nabla \cdot v$ は速度場の発散。

$$h_2 - \boldsymbol{k}) rac{\boldsymbol{k} \cdot \boldsymbol{k}_1}{k_1^2} \delta(\boldsymbol{k}_2, au) heta(\boldsymbol{k}_1, au),$$

 $= -\int \frac{d^{3}k_{1}}{(2\pi)^{3}} \int d^{3}k_{2} \delta_{D}(\mathbf{k}_{1} + \mathbf{k}_{2} - \mathbf{k}) \frac{k^{2}(\mathbf{k}_{1} \cdot \mathbf{k}_{2})}{2k_{1}^{2}k_{2}^{2}} \theta(\mathbf{k}_{1}, \tau) \theta(\mathbf{k}_{2}, \tau)$

δに関してティラー展開

δ は 1 次の摂動(線形摂動)

$$\delta(\mathbf{k},\tau) = \sum_{n=1}^{\infty} a^n(\tau) \int \frac{d^3 q_1}{(2\pi)^3} \cdots \frac{d^3 q_{n-1}}{(2\pi)^3} \int d^3 q_n \delta_D(\sum_{i=1}^n \mathbf{q}_i - \mathbf{k}) F_n(\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \cdots \delta_1(\mathbf{q}_n),$$

$$\theta(\mathbf{k},\tau) = -\sum_{n=1}^{\infty} \dot{a}(\tau) a^{n-1}(\tau) \int \frac{d^3 q_1}{(2\pi)^3} \cdots \frac{d^3 q_{n-1}}{(2\pi)^3} \int d^3 q_n \delta_D(\sum_{i=1}^n \mathbf{q}_i - \mathbf{k}) G_n(\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \cdots \delta_1(\mathbf{q}_n)$$

3次の項(δ³)までキープ

• $\delta = \delta_1 + \delta_2 + \delta_3$ と書く。ここで $\delta_2 = O(\delta_1^2), \delta_3 = O(\delta_1^3).$

 パワースペクトル, P(k)=P_L(k)+P₂₂(k)+2P₁₃(k), は 以下のようにオーダー毎に分割して書く。

 $(2\pi)^{3}P(k)\delta_{D}(k+k')$ $\equiv \langle \delta(\boldsymbol{k},\tau) \delta(\boldsymbol{k}',\tau) \rangle$ $= \langle \delta_1(\mathbf{k},\tau) \delta_1(\mathbf{k}',\tau) \rangle + \langle \delta_2(\mathbf{k},\tau) \delta_1(\mathbf{k}',\tau) + \delta_1(\mathbf{k},\tau) \delta_2(\mathbf{k}',\tau) \rangle$ + $\langle \delta_1(\mathbf{k},\tau) \delta_3(\mathbf{k}',\tau) + \delta_2(\mathbf{k},\tau) \delta_2(\mathbf{k}',\tau) + \delta_3(\mathbf{k},\tau) \delta_1(\mathbf{k}',\tau) \rangle$ $+ \mathcal{O}(\delta_1^6)$

Vishniac (1983); Fry (1984); Goroff et al. (1986); Suto&Sasaki (1991); Makino et al. (1992); Jain&Bertschinger (1994); Scoccimarro&Frieman (1996)

P(k): 3次の摂動論の解

 $P_{22}(k) = 2 \int \frac{d^3 q}{(2\pi)^3} P_L(q) P_L(|\mathbf{k}|)$

 $2P_{13}(k) = \frac{2\pi k^2}{252} P_L(k) \int_0^\infty \frac{d}{(2\pi)^2} P_L(k) \int_0^\infty \frac$ $\times \quad \left| 100 \frac{q^2}{k^2} - 158 + \right|$

 $+ \frac{3}{k^5 a^3} (q^2 - k^2)^3 (2k)$

● F₂^(s) は既知の関数 (Goroff et al. 1986)

$$(\boldsymbol{r}-\boldsymbol{q}|)\left[F_2^{(s)}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q})
ight]^2$$

$$\frac{dq}{(2\pi)^3} P_L(q)$$

$$12\frac{k^2}{q^2} - 42\frac{q^4}{k^4}$$

$$k^2 + 7q^2) \ln\left(\frac{k+q}{|k-q|}\right)^{-1}$$

Mpc³ Spectrum, P(k) [h⁻³

でも、銀河は?

我々が測定するのは「銀河」のパワースペクトル 「物質」のパワースペクトルが何の役に立つと 言うのか?

 どうやって摂動論を銀河のパワースペクトルに拡 張すれば良いのだろうか?

局在銀河形成仮定

- 銀河の分布は物質の分布と完全には一致せず、ある バイアスのかかった分布を持つ。
- 大抵これは「線形バイアス」として Pg(k)=b1² P(k) のようにモデル化される。b」は定数。
- どうやってこれを非線形な形に拡張するか?
- 仮定:銀河形成は局在した物理過程。少なくとも、 我々が興味あるスケールでは成立するとみなす。

δ。をδでティラー展開する

- $\delta_{g}(x) = c_1 \delta(x) + c_2 \delta^2(x) + c_3 \delta^3(x) + O(\delta^4) + \epsilon(x)$
- ここで δ は非線形な物質揺らぎ、 ϵ は物質揺らぎとは 相関を持たない「ノイズ」: <δ(x)ε(x)>=0.
- 両辺とも同じ空間地点xで定義される事から、局在し た銀河形成を仮定しているのがわかる。
- 局在仮定は必ずどこかで破れるが、破れないスケー ルのみ扱う、というスタンス。

Gaztanaga & Fry (1993); McDonald (2006)

銀河のパワースペクトル $\mathbf{P}_{\mathbf{g}}(\mathbf{k}) = N + b_1^2 \left| P(k) + \frac{b_2^2}{2} \int \frac{d^3 q}{(2\pi)^3} P(q) \left[P(|\mathbf{k} - \mathbf{q}|) - P(q) \right] \right|$ + $2b_2 \int \frac{d^3 q}{(2\pi)^3} P(q) P(|\mathbf{k}-\mathbf{q}|) F_2^{(s)}(\mathbf{q},\mathbf{k}-\mathbf{q})$

- 3つのバイアスパラメータ b₁, b₂, N は、テイラー
 - 展開の係数 c₁, c₂, c₃, εと関係している。
- これらは銀河形成の情報を持っているが、我々の 興味ではないため、b₁, b₂, Nは完全にフリー。

McDonald (2006)

ミレニアム "銀河" シミュレーション

- 銀河の宇宙論的シミュレーションと比較してみる。
- 現状でベストなミレニアムシミュレーション (Springel
 - et al. 2005) を使う。銀河は準解析的銀河形成コードに
 - より作られたカタログを使う。
 - MPA $\exists k$: De Lucia & Blaizot (2007)
 - Durham $\exists k$: Croton et al. (2006)

Jeong & Komatsu (2008) 摂動論 vs MPA 銀河

k_{max}は 摂動論で 物質 のP(k)が記述できな くなる場所。

バイアスのフィット もkmaxで止める。

摂動論的非線形

バイアスモデル

は、良く合う!

Jeong & Komatsu (2008) 量依存性

- 重い銀河ほど非線形 バイアスが大きい。
 - 摂動論はどの質量で も良く合っている。
- バイアスが大きくて も摂動論は使える!

Jeong & Komatsu (2008) DA(z)をPg(k)から求める

3次の摂動論を用い て、正しいD_A(z)をミレ ニアム"銀河"シミュ レーションから求める 事に成功!

ただし**z=I**は難しい

縮退しまくり(笑)

• バイアスと距離 は、パワースペ クトルのみから では、精度良く 求まらない。

Jeong & Komatsu (2008)

Jeong & Komatsu (2008) b」とb2はバイスペクトルから 求めると仮定してみよう

結果

距離の誤差が大幅 に改善

バイスペクトルは、 絶対に使え!

バイスペクトル ・3点相関関数(バイスペクトル)を用いれば、b1とb2を直接

測定できる!

 $Q_{q}(k_{1},k_{2},k_{3})=(1/b_{1})[Q_{m}(k_{1},k_{2},k_{3})+b_{2}]$ Qmは物質のバイスペクトル。摂動論で計算する。

- •この手法は2dFGRSの観測データに適用され、効果は実証済 (Verde et al. 2002): z=0.17 で b₁=1.04±0.11; b₂=-0.054±0.08
- •高赤方偏移のサーベイなら、10倍以上の精度の向上が期待
 - できる。 (Sefusatti & Komatsu 2007)
- •従って、バイスペクトルは非線形バイアスの補正に必要不可 欠な道具と言える。

triangle configuration

現在の到達点

- z>2のBAOに対する非線形密度揺らぎの効果は、 摂動論を用いて理解できた。
- 同じく、非線形バイアスの効果も摂動論を用い て理解できた。
- バイスペクトルとパワースペクトルの同時解析

アルゴリズムを構築開始。

でも、これらは全部、Real Space。

Redshift Spaceではない!

最も難しい問題

- P_g(k)の理解で最も難しい問題は、銀河の固有速度 に起因する「赤方偏移空間の歪み。」
- この効果の理解はH(z)の測定にとって大変重要。
- なぜ難しいか?
 - 3次の摂動論計算が、z~3でも破綻してしまう。

•(左) コヒーレントな速度場 => 視線方向の相関の<u>上昇</u>

-"Kaiser"効果

•(右) ビリアル的ランダム運動 => 視線方向の相関の<u>減少</u>

-"Finger-of-God"効果

赤方偏移空間の摂動論

- 非線形なKaiser効果 は
 摂動論で
 計算可能
- しかし、z=3で既に
 N体計算と合わない
- シミュレーションか
 ら得られる相関は、
 小さく抑えられてい
 る。=> Finger-of God効果

赤方偏移空間の摂動論

- ここで、Finger-of-God効果を、フリー パラメータを導入す る事で説明を試みる
 •Pg(k)/(1+kpara²σ²)
 そこそこ合ってはい
- るが、できればパラ メータは導入したく ない。

さらに悪い事に

- Redshift Spaceのバイスペクトルも計算しないとい けない。
- 先は長いが、エキサイティングな分野として復活 を遂げつつある!
 - "An Analytic Model for the Bispectrum of Galaxies in Redshift Space" by Smith, Sheth & Scoccimarro, PRD, in press (0712.0017)

まとめ

摂動論で、

重力の非線形成長

● 非線形バイアス

・は、何とかなりそう。

・赤方偏移空間の歪みは、パワースペクトルと バイスペクトルともに、まだまだ発展途上中

• がんばりましょう!

