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Papers To Talk About

• Donghui Jeong & EK, ApJ, 651, 619 (2006)

• Donghui Jeong & EK, arXiv:0805.2632

• Masatoshi Shoji, Donghui Jeong & EK, arXiv:0805.4238

• Jeong, Sefusatti & Komatsu (in preparation)
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Why BAO? In 5 Minutes

• We can measure:

• Angular Diameter Distances, DA(z)

• Hubble Expansion Rates, H(z)

• DA(z) & H(z). These are fundamental quantities to 
measure in cosmology!
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Transverse=DA(z); Radial=H(z)

Two-point correlation 
function measured 
from the SDSS 
Luminous Red 
Galaxies 

(Okumura et al. 2007)
(1+z)ds(zBAO)

θ = ds(zBAO)/DA(z)

cΔz/(1+z) 
= ds(zBAO)H(z)

Linear Theory SDSS Data
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10 Percival et al.

Fig. 12.— The redshift-space power spectrum recovered from the combined SDSS main galaxy and LRG sample, optimally weighted for
both density changes and luminosity dependent bias (solid circles with 1-σ errors). A flat Λ cosmological distance model was assumed with
ΩM = 0.24. Error bars are derived from the diagonal elements of the covariance matrix calculated from 2000 log-normal catalogues created
for this cosmological distance model, but with a power spectrum amplitude and shape matched to that observed (see text for details).
The data are correlated, and the width of the correlations is presented in Fig. 10 (the correlation between data points drops to < 0.33 for
∆k > 0.01 h Mpc−1). The correlations are smaller than the oscillatory features observed in the recovered power spectrum. For comparison
we plot the model power spectrum (solid line) calculated using the fitting formulae of Eisenstein & Hu (1998); Eisenstein et al. (2006), for
the best fit parameters calculated by fitting the WMAP 3-year temperature and polarisation data, h = 0.73, ΩM = 0.24, ns = 0.96 and
Ωb/ΩM = 0.174 (Spergel et al. 2006). The model power spectrum has been convolved with the appropriate window function to match the
measured data, and the normalisation has been matched to that of the large-scale (0.01 < k < 0.06 hMpc−1) data. The deviation from
this low ΩM linear power spectrum is clearly visible at k >

∼
0.06 hMpc−1, and will be discussed further in Section 6. The solid circles with

1σ errors in the inset show the power spectrum ratioed to a smooth model (calculated using a cubic spline fit as described in Percival et al.
2006) compared to the baryon oscillations in the (WMAP 3-year parameter) model (solid line), and shows good agreement. The calculation
of the matter density from these oscillations will be considered in a separate paper (Percival et al. 2006). The dashed line shows the same
model without the correction for the damping effect of small-scale structure growth of Eisenstein et al. (2006). It is worth noting that this
model is not a fit to the data, but a prediction from the CMB experiment.

BAO as a Standard Ruler

• The existence of a localized clustering scale in the 2-point 
function yields oscillations in Fourier space. 

(1+z)dBAO
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DV(z) = {(1+z)2DA2(z)[cz/H(z)]}1/3

Percival et al. (2007)Redshift, z

2dFGRS and SDSS 
main samples

SDSS LRG 
samples
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Once spherically averaged, DA(z) and H(z) are mixed. 
A combination distance, DV(z), has been constrained. 

Ωm=1, ΩΛ=1
Ωm=0.3, ΩΛ=0
Ωm=0.25, ΩΛ=0.75
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H(z) also determined 
recently!

• SDSS DR6 data are now 
good enough to 
constrain H(z) from the 
2-dimension correlation 
function without spherical 
averaging.

• Excellent agreement 
with ΛCDM model.

Gaztanaga, Cabre & Hui (2008)
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Why Go Beyond BAO?

• BAOs capture only a fraction of the information 
contained in the galaxy power spectrum! 

• BAOs use the sound horizon size at z~1020 as the 
standard ruler.

• However, there are other standard rulers:

• Horizon size at the matter-radiation equality 
epoch (z~3200)

• Silk damping scale
8



Eisenstein & Hu (1998)

BAO

9



...and, these are all well known
• Cosmologists have been measuring keq over the last 

three decades.

• This was usually called the “Shape Parameter,” denoted 
as Γ.

• Γ is proportional to keq/h, and:

• The effect of the Silk damping is contained in the 
constant of proportionality.

• Easier to measure than BAOs: the signal is much 
stronger. 10



WMAP & Standard Ruler

• With WMAP 5-year data only, the scales of the 
standard rulers have been determined accurately 
(Komatsu et al. 2008). Even when w≠-1, Ωk≠0,

• ds(zBAO) = 153.4+1.9-2.0 Mpc (zBAO=1019.8 ± 1.5)

• keq=(0.975+0.044-0.045)x10-2 Mpc-1 (zeq=3198+145-146)

• ksilk=(8.83 ± 0.20)x10-2 Mpc-1

1.3%

4.6%

2.3%

With Planck, they will be determined to 
higher precision. 11



BAO vs Full Modeling

• Full modeling improves upon 
the determinations of DA & H 
by more than a factor of two.

• On the DA-H plane, the size 
of the ellipse shrinks by more 
than a factor of four.

Shoji, Jeong & Komatsu (2008)
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For the analysis of HETDEX

• BAO only

• DA: 2.1%, H: 2.6%

• Correlation coefficient: 0.43

• Full Modeling

• DA: 0.96%, H: 0.80%

• Correlation coefficient: -0.79

Shoji, Jeong & Komatsu (2008)

13



HETDEX？
• www.hetdex.org
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Effective Use of Resources

• Using the full information is equivalent to having four 
times as much volume as you would have with the 
BAO-only analysis.

• Save the integration time by a factor of four!
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Still, BAO.

• If what I am saying is correct, why would people talk only 
about the BAOs these days, and tend to ignore the full 
information?

•NON-LINEARITY
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Non-linear Effects

• Three non-linearities

1. Non-linear matter clustering

2. Non-linear galaxy bias

3. Non-linear peculiar velocity

The effects of keq and ksilk can 
be affected by these non-linear 
effects much more strongly 
than the effects of BAOs.

10 Percival et al.

Fig. 12.— The redshift-space power spectrum recovered from the combined SDSS main galaxy and LRG sample, optimally weighted for
both density changes and luminosity dependent bias (solid circles with 1-σ errors). A flat Λ cosmological distance model was assumed with
ΩM = 0.24. Error bars are derived from the diagonal elements of the covariance matrix calculated from 2000 log-normal catalogues created
for this cosmological distance model, but with a power spectrum amplitude and shape matched to that observed (see text for details).
The data are correlated, and the width of the correlations is presented in Fig. 10 (the correlation between data points drops to < 0.33 for
∆k > 0.01 h Mpc−1). The correlations are smaller than the oscillatory features observed in the recovered power spectrum. For comparison
we plot the model power spectrum (solid line) calculated using the fitting formulae of Eisenstein & Hu (1998); Eisenstein et al. (2006), for
the best fit parameters calculated by fitting the WMAP 3-year temperature and polarisation data, h = 0.73, ΩM = 0.24, ns = 0.96 and
Ωb/ΩM = 0.174 (Spergel et al. 2006). The model power spectrum has been convolved with the appropriate window function to match the
measured data, and the normalisation has been matched to that of the large-scale (0.01 < k < 0.06 hMpc−1) data. The deviation from
this low ΩM linear power spectrum is clearly visible at k >

∼
0.06 hMpc−1, and will be discussed further in Section 6. The solid circles with

1σ errors in the inset show the power spectrum ratioed to a smooth model (calculated using a cubic spline fit as described in Percival et al.
2006) compared to the baryon oscillations in the (WMAP 3-year parameter) model (solid line), and shows good agreement. The calculation
of the matter density from these oscillations will be considered in a separate paper (Percival et al. 2006). The dashed line shows the same
model without the correction for the damping effect of small-scale structure growth of Eisenstein et al. (2006). It is worth noting that this
model is not a fit to the data, but a prediction from the CMB experiment.

Real Data

Linear Theory

OK for BAO?
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According to Dan Eisenstein:

• The phases of BAOs are not 
affected by the non-linear 
evolution very much.

• The effects are correctable.

• z=0.3: 0.54%

• z=1.5: 0.25%

Seo, Siegel, Eisenstein & White (2008)
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Why Full Information? Reason II

• Not only do we improve upon the determinations 
of DA & H, but also:

• We can constrain inflationary models, and 

• We can measure the neutrino masses and the 
number of massive neutrino species.

• Therefore, just using the BAOs is such a waste of 
information!

Takada, Komatsu & Futamase (2006)
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Toward Understanding 
Non-linearities

• Three non-linearities

1. Non-linear matter clustering

2. Non-linear galaxy bias

3. Non-linear peculiar velocity

Solid theoretical framework is 
necessary for avoiding any 
empirical, calibration factors

10 Percival et al.

Fig. 12.— The redshift-space power spectrum recovered from the combined SDSS main galaxy and LRG sample, optimally weighted for
both density changes and luminosity dependent bias (solid circles with 1-σ errors). A flat Λ cosmological distance model was assumed with
ΩM = 0.24. Error bars are derived from the diagonal elements of the covariance matrix calculated from 2000 log-normal catalogues created
for this cosmological distance model, but with a power spectrum amplitude and shape matched to that observed (see text for details).
The data are correlated, and the width of the correlations is presented in Fig. 10 (the correlation between data points drops to < 0.33 for
∆k > 0.01 h Mpc−1). The correlations are smaller than the oscillatory features observed in the recovered power spectrum. For comparison
we plot the model power spectrum (solid line) calculated using the fitting formulae of Eisenstein & Hu (1998); Eisenstein et al. (2006), for
the best fit parameters calculated by fitting the WMAP 3-year temperature and polarisation data, h = 0.73, ΩM = 0.24, ns = 0.96 and
Ωb/ΩM = 0.174 (Spergel et al. 2006). The model power spectrum has been convolved with the appropriate window function to match the
measured data, and the normalisation has been matched to that of the large-scale (0.01 < k < 0.06 hMpc−1) data. The deviation from
this low ΩM linear power spectrum is clearly visible at k >

∼
0.06 hMpc−1, and will be discussed further in Section 6. The solid circles with

1σ errors in the inset show the power spectrum ratioed to a smooth model (calculated using a cubic spline fit as described in Percival et al.
2006) compared to the baryon oscillations in the (WMAP 3-year parameter) model (solid line), and shows good agreement. The calculation
of the matter density from these oscillations will be considered in a separate paper (Percival et al. 2006). The dashed line shows the same
model without the correction for the damping effect of small-scale structure growth of Eisenstein et al. (2006). It is worth noting that this
model is not a fit to the data, but a prediction from the CMB experiment.

Real Data

Linear Theory

OK for BAO?
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• Solid framework: Perturbation Theory (PT)

• Validity of the cosmological linear 
perturbation theory has been verified 
observationally (Remember WMAP!) 

• So, we just go beyond the linear theory, and 
calculate higher order terms in perturbations.

• 3rd-order perturbation theory (3PT)

Toward Understanding 
Non-linearities
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Is 3PT New?

• No. It is more than 25 years old.

• Active investigations in 1990’s

• Most popular in European and Asian countries, but 
was not very popular in USA for some reason

• 3PT has never been applied to the real data so far. Why?

• Non-linearity is too strong to model by PT at z~0
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Why Perturbation Theory 
Now?

• The time has changed.

• High-redshift (z>1) galaxy redshift surveys are 
now possible.

• And now, such surveys are needed for Dark Energy studies

• Non-linearities are weaker at z>1, making it 
possible to use the cosmological perturbation 
theory!
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Just Three Equations to Solve
• Consider large scales, where the baryon pressure is 

negligible, i.e., the scales larger than the Jeans scale

• Ignore the shell-crossing, i.e., the velocity field of 
particles has zero curl: rotV=0.

• Equations to solve are:
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Fourier Transform...

• Here,                   is the velocity divergence.

– 8 –

our using θ ≡ ∇ · v, the velocity divergence field. Using equation (5) and the Friedmann

equation, we write the continuity equation [Eq. (3)] and the Euler equation [Eq. (4)] in

Fourier space as

δ̇(k, τ ) + θ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k · k1

k2
1

δ(k2, τ )θ(k1, τ ), (6)

θ̇(k, τ ) +
ȧ

a
θ(k, τ ) +

3ȧ2

2a2
Ωm(τ )δ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k2(k1 · k2)

2k2
1k

2
2

θ(k1, τ )θ(k2, τ ),

(7)

respectively.

To proceed further, we assume that the universe is matter dominated, Ωm(τ ) = 1

and a(τ ) ∝ τ 2. Of course, this assumption cannot be fully justified, as dark energy

dominates the universe at low z. Nevertheless, it has been shown that the next-to-leading

order correction to P (k) is extremely insensitive to the underlying cosmology, if one

uses the correct growth factor for δ(k, τ ) (Bernardeau et al. 2002). Moreover, as we are

primarily interested in z ≥ 1, where the universe is still matter dominated, accuracy of our

approximation is even better. (We quantify the error due to this approximation below.) To

solve these coupled equations, we shall expand δ(k, τ ) and θ(k, τ ) perturbatively using the

n-th power of linear solution, δ1(k), as a basis:

δ(k, τ ) =
∞

∑

n=1

an(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Fn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn), (8)

θ(k, τ ) = −
∞

∑

n=1

ȧ(τ )an−1(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Gn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn). (9)

25



Taylor-expand in δ1

• δ1 is the linear perturbation

– 8 –

our using θ ≡ ∇ · v, the velocity divergence field. Using equation (5) and the Friedmann

equation, we write the continuity equation [Eq. (3)] and the Euler equation [Eq. (4)] in

Fourier space as

δ̇(k, τ ) + θ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k · k1

k2
1

δ(k2, τ )θ(k1, τ ), (6)

θ̇(k, τ ) +
ȧ

a
θ(k, τ ) +

3ȧ2

2a2
Ωm(τ )δ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k2(k1 · k2)

2k2
1k

2
2

θ(k1, τ )θ(k2, τ ),

(7)

respectively.

To proceed further, we assume that the universe is matter dominated, Ωm(τ ) = 1

and a(τ ) ∝ τ 2. Of course, this assumption cannot be fully justified, as dark energy

dominates the universe at low z. Nevertheless, it has been shown that the next-to-leading

order correction to P (k) is extremely insensitive to the underlying cosmology, if one

uses the correct growth factor for δ(k, τ ) (Bernardeau et al. 2002). Moreover, as we are

primarily interested in z ≥ 1, where the universe is still matter dominated, accuracy of our

approximation is even better. (We quantify the error due to this approximation below.) To

solve these coupled equations, we shall expand δ(k, τ ) and θ(k, τ ) perturbatively using the

n-th power of linear solution, δ1(k), as a basis:

δ(k, τ ) =
∞

∑

n=1

an(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

∫

d3qnδD(
n

∑

i=1

qi−k)Fn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn),

θ(k, τ ) = −
∞

∑

n=1

ȧ(τ )an−1(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

∫

d3qnδD(
n

∑

i=1

qi−k)Gn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn)

Here, the functions F and G follows the following recursion relations with the trivial initial

conditions, F1 = G1 = 1. (Jain & Bertschinger 1994)
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Keep terms up to 3rd order

• δ=δ1+δ2+δ3, where δ2=O(δ12), δ3=O(δ13).

• Power spectrum, P(k)=PL(k)+P22(k)+2P13(k), may be 
written, order-by-order, as

Odd powers in δ1 vanish (Gaussianity) 

PL

P13 P13P22
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P(k): 3rd-order Solution

• F2(s) is a known mathematical function (Goroff et al. 1986)

Vishniac (1983); Fry (1984); Goroff et al. (1986); Suto&Sasaki (1991); 
Makino et al. (1992); Jain&Bertschinger (1994); Scoccimarro&Frieman (1996)

– 10 –

where

P22(k) = 2

∫

d3q

(2π)3
PL(q)PL(|k − q|)

[

F (s)
2 (q, k − q)

]2
, (16)

2P13(k) =
2πk2

252
PL(k)

∫ ∞

0

dq

(2π)3
PL(q)

×

[

100
q2

k2
− 158 + 12

k2

q2
− 42

q4

k4

+
3

k5q3
(q2 − k2)3(2k2 + 7q2) ln

(

k + q

|k − q|

)

]

, (17)

where PL(k) stands for the linear power spectrum. While F (s)
2 (k1, k2) should be

modified for different cosmological models, the difference vanishes when k1 ‖ k2.

The biggest correction comes from the configurations with k1 ⊥ k2, for which

[F (s)
2 (ΛCDM)/F (s)

2 (EdS)]2 % 1.006 and ! 1.001 at z = 0 and z ≥ 1, respectively. Here,

F (s)
2 (EdS) is given by equation (13), while F (s)

2 (ΛCDM) contains corrections due to Ωm '= 1

and ΩΛ '= 0 (Matsubara 1995; Scoccimarro et al. 1998), and we used Ωm = 0.27 and

ΩΛ = 0.73 at present. The information about different background cosmology is thus almost

entirely encoded in the linear growth factor. We extend the results obtained above to

arbitrary cosmological models by simply replacing a(τ ) in equation (15) with an appropriate

linear growth factor, D(z),

Pδδ(k, z) = D2(z)PL(k) + D4(z)[2P13(k) + P22(k)]. (18)

We shall use equation (16)–(18) to compute P (k, z).

2.2. Non-linear Halo Power Spectrum : Bias in 3rd order PT

In this section, we review the 3rd-order PT calculation as the next-to-leading

order correction to the halo power spectrum. We will closely follow the calculation of

(McDonald 2006). In the last section, we reviewed the 3rd-order calculation of matter

power spectrum. Here, the basic assumptions and equations are the same previous section,

but to get the analytic formula for the halo power spectrum, we need one more assumption,
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3PT vs N-body Simulations
Jeong & Komatsu (2006)
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BAO: Matter Non-linearity
Jeong & Komatsu (2006)

3rd-order PTSimulation

Linear theory
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What About Galaxies?

• We measure the galaxy power spectrum.

• Who cares about the matter power spectrum?

• How can we use 3PT for galaxies?
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Local Bias Assumption
• The distribution of galaxies is not the same as the 

distribution of matter fluctuations 

• Usually, this fact is modeled by the so-called “linear bias,” 
meaning Pg(k)=b12 P(k), where b1 a scale-independent 
(but time-dependent)  factor.

• How do we extend this to the non-linear form? We 
have to assume something about the galaxy formation

• Assumption: galaxy formation is a local process, at least 
on the scales that cosmologists care about.
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Taylor-expand δg in δ
δg(x) = c1δ(x) + c2δ2(x) + c3δ3(x) + O(δ4) + ε(x)

Here, δ is the non-linear matter perturbation, ε is 
stocastic “noise,” uncorrelated with δ, i.e., <δ(x)ε(x)>=0.

• Both sides of this equation are evaluated at the same 
spatial location, x, hence the term “local.”

• We know that the local assumption breaks down at some 
small scales. That’s where we must stop using PT.

Gaztanaga & Fry (1993); McDonald (2006)
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3PT Galaxy Power Spectrum

• 3 bias parameters (b1, b2, N) are linearly related to the 
coefficients of the Taylor expansion (c1, c2, c3, ε)

• These parameters contain the information of the physics 
of galaxy formation; however, we shall marginalize over 
them because we are not interested in them. (b1, b2, N 
are nuisance parameters)

Pg(k)

McDonald (2006)
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Millennium “Galaxy” Catalogue

• Let’s compare 3PT with galaxy simulations...

• The best simulation available today: Millennium Simulation 
(Springel et al. 2005).

• Millinnium Simulation is a N-body simulation. How did they 
create galaxies? Semi-analytical galaxy formation recipe.

• MPA code: De Lucia & Blaizot (2007)

• Durham code: Croton et al. (2006)
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3PT vs MPA galaxies
• kmax is where 3PT 

deviates from the 
matter P(k) at 1%.

• So, we must stop 
using 3PT for galaxies 
at kmax also.

• 3PT with local bias 
assumption fits the 
Millennium 
Simulation very 
well.

Jeong & Komatsu (2008)
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BAO: Non-linear Bias

• It is obvious that non-
linear bias is going to 
be important for 
BAOs

• But, we now know 
how to model the 
effect!

Jeong & Komatsu (2008)
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Galaxy Mass Dependence
• Massive galaxies are 

more strongly biased 
with greater non-
linearities

• This is a well-known 
fact, by the way.

• 3PT works just fine for 
any masses, as long as 
we apply it only up to 
kmax that is given by the 
matter power spectrum

Jeong & Komatsu (2008)
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DA(z) From Pg(k)
• Result

With 3PT, we succeeded 
in measuring the correct 
DA(z) from the 
“observed” galaxy power 
spectra in the Millennium 
Simualtion at z>2

• However, z=1still seems 
challenging

• Better PT is needed, 
e.g., Renormalized PT

Jeong & Komatsu (2008)
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So Much Degeneracies...
• Bias parameters 

and the distance 
are strongly 
degenerate, if we 
use the power 
spectrum 
information only.

• Solution?

• Use the 
bispectrum!

Jeong & Komatsu (2008)
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Let’s say, we determine b1 and b2 from the 
galaxy bispectra...

• Result

The errors in the 
distance determinations 
are reduced 
substantially.

WE MUST USE 
THE BISPECTRUM

Jeong & Komatsu (2008)
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Bispectrum?
• Bispectrum (3-point correlation) depends on b1 and b2 as:

Qg(k1,k2,k3)=(1/b1)[Qm(k1,k2,k3)+b2]
Qm is the matter bispectrum, given by PT.

• This method has been applied to the real data (2dFGRS): 
b1=1.04±0.11; b2=-0.054±0.08 at z=0.17 (Verde et al. 2002)

•At higher redshifts, we expect x10 better results (Sefusatti & 
Komatsu 2007)

•The bispectrum is an indispensable tool for measuring the 
bias parameters.
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• 2nd-order PT

• Good agreement 
at z=6

• Preliminary!

Jeong, Sefusatti & Komatsu (in preparation)

PT vs Bispectrum (z=6)
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PT vs Bispectrum (z=3)

• 2nd-order PT

• Agreement is not 
satisfactory, even 
at z=3

• 4th-order PT is 
necessary?

• Preliminary!

Jeong, Sefusatti & Komatsu (in preparation)
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Results So Far
• We understood the effects of matter non-linearity on 

P(k) at z>2, using cosmological perturbation theory.

• Galaxy bias is also understood, at least on large scales 
where 3PT is valid.

• Bispectrum must be used: we are now developing a 
joint analysis pipeline using the power spectrum and 
bispectrum.

Biggest Limitation
These results are all in real space. We 

still need to go to redshift space... 45



Most Difficult Problem

• The most difficult (and unsolved) problem in modeling 
Pg(k) is the “redshift space distortion” arising from the 
peculiar velocity of galaxies

• Understanding this effect is crucial for getting H(z) out 
of the observed galaxy power spectrum

• Why so difficult?

• Perturbation theory calculation breaks down, even at 
z~3
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Redshift Space Distortion

• (Left) Coherent velocity field => Clustering enhanced 
along the line of sight

• “Kaiser” effect
• (Right) Virial-like random motion => Clustering diminished 

along the line of sight
• “Finger-of-God” effect

47



Redshift Space Distortion
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PT in Redshift Space
• Non-linear Kaiser 

effect can be 
calculated by PT

• But, PT 
overestimates power 
at z<3...

• This is caused by the 
Finger-of-God effect, 
which is non-
perturbative and is 
absent in the existing 
PT calculations 49



• Empirical (and 
historical) modeling 
of FoG

• Pg(k)/(1+kpara2σ2)

• Agreement is a sort 
of OK, but this is a 
wrong approach.
• We need to 

remove any room 
for empirical 
calibrations.

• Work to do. (There 
are some ideas.)

PT in Redshift Space
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Even Worse

• Bispectrum needs to be computed in redshift space 
also!

• Seems like a long way to go, but serious investigations 
have already begun. E.g.,

• “An Analytic Model for the Bispectrum of Galaxies 
in Redshift Space” by Smith, Sheth & Scoccimarro, 
PRD, in press (0712.0017)
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Summary
• With perturbation theory, we think we can model

• non-linear matter clustering, and

• non-linear and stochastic galaxy bias

• Redshift space distortion requires more work. It is 
likely that we need to give up perturbative 
descriptions of FoG.

• Need for a hybrid approach: PT for P(k) in real 
space, convolved with the velocity distribution 
function computed in some other way

• HETDEX starting in 2011: we still have 3 years...
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