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How do we see the halos?
Fig. 30.— SPT-CL J2337-5942 at zspec = 0.775. Spitzer/IRAC [3.6] and Magellan/IMACS f/2 ig images are shown in the optical/infrared

panel.

Fig. 31.— SPT-CL J2344-4243 at zrs = 0.62. Blanco/MOSAIC-II irg images are shown in the optical/infrared panel.
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How does primordial non-Gaussianity 
impact the mass function?

changes the 
abundance of halos

Dalal, Dore, Huterur, Shirokov 2007
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Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000
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NO!



Simplest possible model
Does it work?

Mass function of dark matter halos 9

Figure 7. The FOF(0.2) mass functions of all the simulation out-
puts listed in Table 2. Remarkably, when a single linking length
is used to identify halos at all times and in all cosmologies, the
mass function appears to be invariant in the f − lnσ−1 plane. A
single formula (eqn. 9), shown with a dotted line, fits all the mass
functions with an accuracy of better than about 20% over the
entire range. The dashed curve show the Press-Schechter mass
function for comparison.

effective power spectrum slope, neff . Cosmic density ranges
over 0.3 ≤ Ω ≤ 1.0. Remarkably, all curves lie very close
to a single locus in the f − ln σ−1 plane. The use of a con-
stant linking length has significantly reduced the amplitude
of the redshift trend seen in the ΛCDM model in the previ-
ous section, and also places the OCDM outputs on the same
locus.

The numerical data in Fig. 7 are well fit by the following
formula:

f(M) = 0.315 exp
[

− | ln σ−1 + 0.61|3.8
]

, (9)

valid over the range −1.2 ≤ ln σ−1 ≤ 1.05.
In Fig. 8 we plot the difference between the measured

mass functions and our fitting formula. The fit is good to
a fractional accuracy better than 20% for −1.2 ≤ lnσ−1 ≤
1. This is a very significant improvement over the Press-
Schechter formula which would exceed the vertical limits of
the plot! The curves for the open models with Ω = 0.3 are
slightly high in this plot but only by ∼ 10%. The spread
between the different curves increases for large lnσ−1. This
may simply reflect the fact that the very steep high mass end
of the mass function is sensitive to numerical effects which
change the masses of clusters in a systematic way.

As shown in the figure, eqn. 9 is very close to the formula
proposed by Sheth & Tormen (1999); there is a small dif-
ference in the high mass tail, for lnσ−1 > 0.9. A non-linear
least-squares fit of eqn. 7 to the simulation data in Fig. 8
shows that the fit can be improved by adjusting the param-
eters A, p and a. If the normalisation constraint, eqn. 6, is
ignored, all three parameters can be allowed to vary freely.
In this case, the best fit is obtained for A = 0.353, p = 0.175

Figure 8. The residual between the fitting formula, eqn. 9, and
the FOF(0.2) mass functions for all the simulation outputs listed
in Table 2. The lines are colour codes according to the value
of neff . Solid lines correspond to simulations with Ω = 1, short
dashed lines to flat, low Ω0 models, and long dashed lines to open
models. The heavy dashed line shows the Sheth-Tormen formula
(equation (7))

and a = 0.73 (and 0.84 of the mass is in halos). If the nor-
malisation constraint is enforced, then only two parameters
can vary; in this case the fit is not as good as that provided
by eqn. 9.

Fig. 9 shows the area of the lnσ−1−neff parameter space
which is occupied by the data in Fig. 8. The high mass end
has good coverage in neff with values up to -2.3. In prac-
tice this means that for currently popular cosmologies, the
high mass tail of the halo mass function is well determined
at all redshifts where galaxies have so far been observed.
The τCDM-gif simulation at z = 4.04 has neff = −2.26
and agrees well with τCDM-hub which determine the high
mass end of the mass function at more recent epochs. We
have checked that the τCDM-gif z = 5 output, which has
neff = −2.35, is also consistent with our fitting function,
although its Poisson errors are slightly too large to satisfy
our 10% criterion for inclusion in Figs. 7–9. For low Ω our
fitting formulae should work to even higher redshift. Since
fluctuations grow more slowly for low Ω, and the value of
σ8 required to match current cluster abundances is higher,
low density cosmologies predict substantially less negative
values for neff at each redshift.

6 CONCLUSIONS

We have derived halo mass functions at z = 0 from sim-
ulations of the τCDM and ΛCDM cosmologies over more
than four orders of magnitude in mass, ∼ 3 × 1011 to
∼ 5 × 1015h−1M". In particular, our two Hubble volume
simulations provide the best available predictions for the
abundance of the most massive clusters. We have checked
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Figure 5. Comparison between the halo mass functions from our simulations and from the models by Matarrese et al. (2000), by
LoVerde et al (2008), and the fit by Dalal et al. (2008) for different values of fNL (different panels) and for z = 0, 0.5, 1 (triangles,
circles, squares, respectively). The quantity which is plotted is the ratio f(z, fNL)/f(z, fNL = 0, ). The dotted lines indicate the models
of Matarrese et al. 2000 (green) and LoVerde et al 2008 (magenta), as they appear in equations (B.6) and (4.19) of LoVerde et al (2008),
respectively. The corresponding solid lines indicate the same models with a reduced threshold for halo collapse: δc ! 1.5. The blue solid
lines are obtained by convolving the fNL-dependent kernel given in Dalal et al. (2008) with the mass-function fit for the Gaussian case
by Warren et al. (2006).

3.5 Summary of accuracy and range of validity of

the mass function fits

In order to facilitate the use of our fitting formulae for the
halo mass function we summarize here their accuracy and
range of validity.

• For −80 ! fNL ! 80 and 0 ! z ! 0.5 the best de-
scription (with 5 per cent accuracy) of our numerical data
is given by equations (10), (4) and (11);

• For larger values of fNL and z (but with fNL ! 750 and
z ! 1.6) or whenever an accuracy of 10 per cent is enough,
the universal fits of Section 3.2 should be used:

– universal fit for −80 ! fNL ! 250: equations (4), (7)
and Table 4;

– universal fit for −80 ! fNL ! 750: equations (4), (8),
(9) and Table 5.

4 MATTER POWER SPECTRUM

In this section we study how non-Gaussian initial conditions
influence the power spectrum of the mass density field. At
tree level, the power spectrum does not depend on fNL in
Eulerian perturbation theory. However, one-loop corrections
make the power spectrum fNL-dependent. Qualitatively,
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fNL non-Gaussian:

ridiculously well given assumptions!



well enough for precision cosmology?

Calibration off sims remains the standard
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ABSTRACT

Dark matter haloes are biased tracers of the underlying dark matter distribution.
We use a simple model to provide a relation between the abundance of dark matter
haloes and their spatial distribution on large scales. Our model shows that knowledge
of the unconditional mass function alone is sufficient to provide an accurate estimate
of the large scale bias factor. Then we use the mass function measured in numerical
simulations of SCDM, OCDM and ΛCDM to compute this bias. Comparison with
these simulations shows that this simple way of estimating the bias relation and its
evolution is accurate for less massive haloes as well as massive ones. In particular, we
show that haloes which are less/more massive than typical M∗ haloes at the time they
form are more/less strongly clustered than formulae based on the standard Press–
Schechter mass function predict.

Key words: galaxies: clustering – cosmology: theory – dark matter.

1 INTRODUCTION

There has been considerable interest recently in developing
models for the shape and evolution of the mass function of
collapsed dark matter haloes (Press & Schechter 1974; Bond
et al. 1991; Lacey & Cole 1993) as well as for the evolution of
the spatial distribution of these haloes (Mo & White 1996;
Catelan et al. 1997; Sheth & Lemson 1999). In these models,
the haloes are biased tracers of the underlying dark matter
distribution. In general, this bias depends on the halo mass,
and, for a given mass range, it is a nonlinear and stochastic
function of the underlying dark matter density field.

The shape of the mass function (and its evolution) pre-
dicted by these models is in reasonable agreement with what
is measured in numerical simulations of hierarchical clus-
tering from Gaussian initial conditions (e.g. Lacey & Cole
1994). Although this agreement is by no means perfect (see
Fig. 2 below), to date, the emphasis has been on how well
the models fit the simulations (but see Tormen 1998). On
the other hand, recent work has shown that, while the model
predictions for the bias relation are in reasonable agreement
with what is measured in numerical simulations for massive
haloes, less massive haloes are more strongly clustered, or
less anti-biased, than the models predict (Jing 1998; Sheth
& Lemson 1999; Porciani, Catelan & Lacey 1998).

In this paper, following a suggestion by Sheth & Lem-
son (1999), we argue that this discrepancy between the bias
model and simulation results arises primarily because the
model mass functions are different from those in the simula-
tions. In Section 2 we provide a simple relation between the

mass function and the large scale bias factor. We then use
the mass function measured in the simulations to show that
this relation is accurate. Section 3 shows that our model pro-
vides a reaonably good fit to the bias relation of less massive
haloes as well as massive ones.

2 MASS FUNCTIONS AND LARGE SCALE

BIASING

Let f(m, δ) dm, where δ = δ(z) is a function of redshift z,
denote the fraction of mass that is contained in collapsed
haloes that at z have mass in the range dm about m. The
associated unconditional mass function is

n(m, δ) dm =
ρ̄
m

f(m, δ) dm (1)

where ρ̄ is the background density. Let f(m1, δ1|M0, δ0) de-
note the fraction of the mass of a halo M0 at z0 that was in
subhaloes of mass m1 at z1, where z1 > z0. The associated
conditional mass function is

N (1|0) =
M0

m1
f(m1, δ1|M0, δ0). (2)

Finally, let N̄(m1, δ1|M, V, z0) denote the average number of
(m1, δ1) haloes that are within cells of size V that contain
mass M at z0. The halo bias relation is defined by

δh(1|0) ≡ N̄(m1, δ1|M, V, z0)
n(m1, δ1)V

− 1. (3)
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ABSTRACT
The predicted mass function of dark matter halos is essential in connecting observed galaxy cluster counts

and models of galaxy clustering to the properties of the primordial density field. We determine the mass
function in the concordance ΛCDM cosmology, as well as its uncertainty, using sixteen 10243-particle nested-
volume dark-matter simulations, spanning a mass range of over five orders of magnitude. Using the nested
volumes and single-halo tests, we find and correct for a systematic error in the friends-of-friends halo-finding
algorithm. We find a fitting form and full error covariance for the mass function that successfully describes
the simulations’ mass function and is well-behaved outside the simulations’ resolutions. Estimated forecasts
of uncertainty in cosmological parameters from future cluster count surveys have negligible contribution from
remaining statistical uncertainties in the central cosmology multiplicity function. There exists a potentially
non-negligible cosmological dependence (non-universality) of the halo multiplicity function.
Subject headings: cosmology: theory — galaxies: clusters: halos — galaxies: halos

1. INTRODUCTION

Collapsed, virialized dark matter halos arise from density
peaks in the initially Gaussian primordial fluctuation field
(Press & Schechter 1974; Bardeen et al. 1986). The abun-
dance of the most massive of these halos is exponentially sen-
sitive to the amplitude of the initial fluctuation field as well
as the mean matter density, making observed counts of their
abundance extremely sensitive to these properties of the den-
sity field, as well as the dark-energy dependent growth rate
of the density field (e.g., Haiman et al. 2001). Condensa-
tion of gas and formation of stars within these halos leads
to the formation of galaxies (White & Rees 1978). In ad-
dition, nonlinear clustering halo-models of dark matter and
galaxies require, as a basic component, the mass function (see
Cooray & Sheth 2002 for a recent review).

The analytic theory of virialized object formation
through collapse of overdense regions as envisioned by
Press & Schechter (1974) (hereafter PS) employs the fact that
a uniform overdensity in the Universe will evolve as a sepa-
rate, closed universe, initially expanding with the background,
but then slowing and turning around to collapse and virialize.
Since the abundance of overdensity peaks only depends on the
fluctuation scale σ, the abundance of halos can be expected to
be universal in these units. Limitations of approximations in
the PS model, e.g., sphericity of collapse and spatial overlap,
led to a modification of the original form with parameters fit to
simulations (Sheth & Tormen 1999, hereafter ST). Using the
same simulations, Jenkins et al. (2001) (hereafter J01) aban-
doned the form of the PS motivated mass function to better
fit the simulations’ mass range, but their functional form can-
not be extrapolated beyond the range of the fit. J01 found the
mass function in σ to be approximately universal for several
cosmologies at the level of ∼15%.

Here, we present a quantification of the dark matter halo
mass function and its uncertainties with a suite of sixteen
nested-volume 10243 particle dark matter simulations of the

1 Theoretical Division, Los Alamos National Laboratory, Los Alamos,
NM 87545

2 Department of Physics, Kelvin Building, University of Glasgow, G12
8QQ, Glasgow, Scotland, UK

concordance ΛCDM cosmology. We quantify the uncertainty
and full covariance of the mass function parameters. Our
halo-finding methodology is given in §2; mass function deter-
mination and error analysis is presented in §3, along with im-
plications for future cluster surveys’ sensitivities; we present
our conclusions in §4.

2. NUMERICAL SIMULATIONS AND HALO MASS
DETERMINATION

We calculate the mass function of dark matter halos aris-
ing in a concordance ΛCDM model by performing numer-
ical simulations of structure growth and halo formation. We
use the Hashed-Oct-Tree (HOT) algorithm, initially described
in Warren & Salmon (1993) and recently compared in detail
with other well-known cosmology codes in Heitmann et al.
(2004). We use a per-interaction error bound based on the
analysis in Salmon & Warren (1994). The fractional error per
interaction is set to be no worse than 10−5 at a redshift of 25,
increasing to 10−3 at redshifts of 5 and lower. The number
of timesteps and Plummer smoothing lengths ranged from
1480 steps and 2.1h−1kpc (physical) for the highest resolu-
tion simulation, to 720 steps and 98h−1kpc (comoving) for
the largest volume. Each simulation required about 2× 1017

floating point operations, which can be computed in roughly
60 hours on a 1024 processor parallel computer using HOT.
Overall, the results presented here required over four exaflops
(4×1018 floating point operations).

We model a universe with flat geometry and parameters
p = (ΩM,Ωb,n,h,σ8) = (0.3,0.04,1,0.7,0.9). (1)

Initial conditions are derived from the transfer functions as
calculated by CMBFAST (Seljak & Zaldarriaga 1996).

In order to simultaneously reduce Poisson error, verify con-
sistency, and resolve the widest mass-scale range available by
our techniques, we employ nested volumes with independent
realizations of the chosen cosmology. We simulated sixteen
boxes of sizes 96, 135, 192, 272, 384, 543, 768, 1086, 1536,
2172, 2583 and 3072 h−1Mpc, with three realizations of 384
h−1Mpc size, and two each of 272 and 3072 h−1Mpc. After
the aggressive requirement of a minimum of 400 particles per
halo, we measure the mass function over five orders of mag-
nitude in mass scale; see Fig. (1). The box size minimum is
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ABSTRACT
We study the formation of dark matter halos in the concordance ΛCDM model over a wide range of redshifts,

from z = 20 to the present. Our primary focus is the halo mass function, a key probe of cosmology. By performing
a large suite of nested-box N-body simulations with careful convergence and error controls (60 simulations with
box sizes from 4 to 256h−1Mpc), we determine the mass function and its evolution with excellent statistical
and systematic errors, reaching a few percent over most of the considered redshift and mass range. Across the
studied redshifts, the halo mass is probed over 6 orders of magnitude (107 – 1013.5 h−1M!). Historically, there has
been considerable variation in the high redshift mass function as obtained by different groups. We have made a
concerted effort to identify and correct possible systematic errors in computing the mass function at high–redshift
and to explain the discrepancies between some of the previous results. We discuss convergence criteria for the
required force resolution, simulation box size, halo mass range, initial and final redshifts, and time stepping.
Because of conservative cuts on the mass range probed by individual boxes, our results are relatively insensitive
to simulation volume, the remaining sensitivity being consistent with extended Press-Schechter theory. Previously
obtained mass function fits near z = 0, when scaled by linear theory, are in good agreement with our results at all
redshifts, although a mild redshift dependence consistent with that found by Reed et al. may exist at low redshifts.
Overall, our results are consistent with a “universal” form for the mass function at high redshifts.
Subject headings: methods: N-body simulations — cosmology: halo mass function

1. INTRODUCTION

A broad suite of astrophysical and cosmological observations
provides compelling evidence for the existence of dark matter.
Although its ultimate nature is unknown, the large-scale dy-
namics of dark matter is essentially that of a self-gravitating
collisionless fluid. In an expanding universe, gravitational in-
stability leads to the formation and growth of structure in the
dark matter distribution. The existence of localized, highly
overdense dark matter clumps, or halos, is a key prediction of
cosmological nonlinear gravitational collapse. The distribution
of dark matter halo masses is termed the halo mass function
and constitutes one of the most important probes of cosmol-
ogy. At low redshifts, z ≤ 2, the mass function at the high-
mass end (cluster scales) is very sensitive to variations in cos-
mological parameters, such as the matter content of the Uni-
verse Ωm, the dark energy content along with its equation-of-
state parameter, w (Holder et al. 2001), and the normalization
of the primordial fluctuation power spectrum, σ8. At higher
redshifts, the halo mass function is important in probing quasar
abundance and formation sites (Haiman & Loeb 2001), as well
as the reionization history of the Universe (Furlanetto et al.
2006).

Many recently suggested reionization scenarios are based on
the assumption that the mass function is given reliably by mod-
ified Press-Schechter type fits (Press & Schechter 1974, here-
after PS; Bond et al. 1991). However, the theoretical basis of
this approach is at best heuristic and careful numerical studies
are required in order to obtain accurate results. Two examples
serve to illustrate this statement. Reed et al. (2003) report a
discrepancy with the Sheth-Tormen fit (Sheth & Tormen 1999,
hereafter ST) of ∼50% at a redshift of z = 15 (we explain the

different fitting formulae and their origin in §2). Heitmann et
al. (2006a) show that the Press-Schechter form can be severely
incorrect at high redshifts: at z ≥ 10, the predicted mass func-
tion sinks below the numerical results by an order of magnitude
at the upper end of the relevant mass scale. Consequently, in-
correct, or at best imprecise, predictions for the reionization
history can result from the failure of fitting formulae.

Since halo formation is a complicated nonlinear gravitational
process, the current theoretical understanding of the mass, spa-
tial distribution, and inner profiles of halos remains at a rela-
tively crude level. Numerical simulations are therefore crucial
as drivers of theoretical progress, having been instrumental in
obtaining important results such as the Navarro-Frenk-White
(NFW) profile (Navarro et al. 1997) for dark matter halos and
an (approximate) universal form for the mass function (Jenkins
et al. 2001, hereafter Jenkins). In order to better understand
the evolution of the mass function at high redshifts, a number
of numerical studies have been carried out. High–redshift simu-
lations, however, suffer from their own set of systematic issues,
and simulation results can be at considerable variance with each
other, differing on occasion by as much as an order of magni-
tude!

Motivated by all of these reasons we have carried out a nu-
merical investigation of the evolution of the mass function with
the aim of attaining good control over both statistical and, more
importantly, possible systematic errors in N-body simulations.
Our first results have been reported in condensed form in Heit-
mann et al. (2006a). Here we provide a more detailed and
complete exposition of our work, including several new results.

We first pay attention to simulation criteria for obtaining ac-
curate mass functions with the aim of reducing systematic ef-
fects. Our two most significant points are that simulations must
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ABSTRACT
We measure the mass function of dark matter halos in a large set of collisionless cosmological simulations

of flat ΛCDM cosmology and investigate its evolution at z ! 2. Halos are identified as isolated density peaks,
and their masses are measured within a series of radii enclosing specific overdensities. We argue that these
spherical overdensity masses are more directly linked to cluster observables than masses measured using the
friends-of-friends algorithm (FOF), and are therefore preferable for accurate forecasts of halo abundances. Our
simulation set allows us to calibrate the mass function at z = 0 for virial masses in the range 1011 h−1 M!

≤ M ≤ 1015 h−1 M! to ! 5%. We derive fitting functions for the halo mass function in this mass range for
a wide range of overdensities, both at z = 0 and earlier epochs. In addition to these formulae, which improve
on previous approximations by 10-20%, our main finding is that the mass function cannot be represented
by a universal fitting function at this level of accuracy. The amplitude of the “universal” function decreases
monotonically by ≈ 20−50%, depending on the mass definition, from z = 0 to 2.5. We also find evidence for
redshift evolution in the overall shape of the mass function.
Subject headings: cosmology:theory — dark matter:halos — methods:numerical — large scale structure of the

universe

1. INTRODUCTION
Galaxy clusters are observable out to high redshift (z ! 1–

2), making them a powerful probe of cosmology. The large
numbers and high concentration of early type galaxies make
clusters bright in optical surveys, and the high intracluster gas
temperatures and densities make them detectable in X-ray and
through the Sunyaev-Zel’dovich (SZ) effect. The evolution
of their abundance and clustering as a function of mass is
sensitive to the power spectrum normalization, matter con-
tent, and the equation of state of the dark energy and, po-
tentially, its evolution (e.g., Holder et al. 2001; Haiman et al.
2001; Weller et al. 2002; Majumdar & Mohr 2003). In addi-
tion, clusters probe the growth of structure in the Universe,
which provides constraints different from and complemen-
tary to the geometric constraints by the supernovae type Ia
(e.g., Albrecht et al. 2006). In particular, the constraints from
structure growth may be crucial in distinguishing between the
possibilities of the cosmic acceleration driven by dark energy
or modification of the magnitude-redshift relation due to the
non-GR gravity on the largest scales (e.g., Knox et al. 2005).

The potential and importance of these constraints have mo-
tivated current efforts to construct several large surveys of
high-redshift clusters both using the ground-based optical
and Sunyaev-Zel’dovich (SZ) surveys and X-ray missions in
space. In order to realize the full statistical power of these sur-
veys, we must be able to make accurate predictions for abun-
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dance evolution as a function of cosmological parameters.
Traditionally, analytic models for halo abundance as

a function of mass, have been used for estimating ex-
pected evolution (Press & Schechter 1974; Bond et al. 1991;
Lee & Shandarin 1998; Sheth & Tormen 1999). Such models,
while convenient to use, require calibration against cosmolog-
ical simulations. In addition, they do not capture the entire
complexity of halo formation and their ultimate accuracy is
likely insufficient for precision cosmological constraints. A
precision mass function can most directly be achieved through
explicit cosmological simulation.

The standard for precision determination of the mass func-
tion from simulations was set by Jenkins et al. (2001) and
Evrard et al. (2002), who have presented fitting function for
the halo abundance accurate to ∼ 10 − 20%. These studies
also showed that this function was universal, in the sense
that the same function and parameters could be used to pre-
dict halo abundance for different redshifts and cosmologies.
Warren et al. (2006) have further improved the calibration
to ≈ 5% accuracy for a fixed cosmology at z = 0. Several
other studies have tested the universality of the mass function
at high redshifts (Reed et al. 2003, 2007; Lukic et al. 2007;
Cohn & White 2007).

One caveat to all these studies is that the theoretical counts
as a function of mass have to be converted to the counts as
a function of the cluster properties observable in a given sur-
vey. Our understanding of physics that shapes these proper-
ties is, however, not sufficiently complete to make reliable,
robust predictions. The widely adopted strategy is therefore
to calibrate abundance as a function of total halo mass and cal-
ibrate the relation between mass and observable cluster prop-
erties either separately or within a survey itself using nuisance
parameters (e.g. Majumdar & Mohr 2004; Lima & Hu 2004,
2005, 2007). The success of such a strategy, however, de-
pends on how well cluster observables correlate with total
cluster mass and whether evolution of this correlation with
time is sufficiently simple (e.g., Lima & Hu 2005).
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Compare with simulations
N-body simulations with fNL, gNL, and τNL 

fNL, τNL = 2fNL2

ML & Smith 2010

kurtosis can have important effects 
on the mass function!
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N-body simulations with fNL, gNL, and τNL 
fNL, τNL = 2fNL2
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the ``log-Edgeworth’’ mass reliably 
captures NG effects for fNL, gNL, and 
τNL types of non-Gaussianity
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Are we done? Can we do better?

• Marcello is hard at work finding ultimate analytic 
formula!

•``Extended Press-Schechter” approaches work for non-
local forms too (Wagner, Verde, Boubekeur)

• Same analytic expression in terms of cumulants works 
well for fNL, gNL, τNL (which are different shapes)



What remains? 

Precision cluster cosmology 
is hard

Fig. 30.— SPT-CL J2337-5942 at zspec = 0.775. Spitzer/IRAC [3.6] and Magellan/IMACS f/2 ig images are shown in the optical/infrared
panel.

Fig. 31.— SPT-CL J2344-4243 at zrs = 0.62. Blanco/MOSAIC-II irg images are shown in the optical/infrared panel.
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Mahdavi et al 2007, 2012; Marrone et al 
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Precision cluster cosmology 
is hard

Fig. 30.— SPT-CL J2337-5942 at zspec = 0.775. Spitzer/IRAC [3.6] and Magellan/IMACS f/2 ig images are shown in the optical/infrared
panel.

Fig. 31.— SPT-CL J2344-4243 at zrs = 0.62. Blanco/MOSAIC-II irg images are shown in the optical/infrared panel.

mass-observable relation?

other degeneracies

baryonic effects?

(e.g. Stanek, Rudd, Evrard 2009)

(e.g. Mantz, Allen, Rapetti, Ebeling 2010; 
Rozo, Bartlett, Evrard, Rykoff 2012: 

Mahdavi et al 2007, 2012; Marrone et al 
2012. . . )

what’s a halo?

What remains? 



Current large-scale structure data:

(Williamson et al 2011)
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Fig. 4.— The X-ray luminosity and SZ inferred masses
M500(�crit) for our cluster sample. We plot statistical uncertainties
only, and note that the statistical uncertainty of the SZ mass esti-
mate is limited by the assumed scatter in the SZ significance-mass
relation. Clusters from the shallow fields are in blue, and clusters
from the deep fields are in red. We also show the best-fit relations
of Pratt et al. (2009) (dotted), Vikhlinin et al. (2009a) (dash-dot),
and Mantz et al. (2010) (dashed).

most massive galaxy clusters in this region of the sky,
independent of the cluster redshift. These exceedingly
rare systems populate the high end of the mass function
at each redshift, and predictions for the characteristics
of this population are sensitive to the details of the as-
sumed cosmological model. An interesting first step in
using the clusters presented in this work to constrain cos-
mology is to ask whether their distribution in mass and
redshift is consistent with the predictions of the stan-
dard �CDM cosmological model. We investigate this
question two ways. First, we use the framework of Mor-
tonson et al. (2010) and the fitting functions they provide
to ask whether the existence of any single cluster in our
sample is in significant tension with �CDM. We then fit
all available cosmological data including this new clus-
ter sample to two di⇥erent cosmological models—namely,
standard �CDM and a single-parameter extension allow-
ing for non-Gaussian initial conditions—and see if the
data prefer the non-standard model.

7.1. Single-cluster Tests

Mortonson et al. (2010) have published fitting func-
tions that allow us to answer the question: Is this one
cluster in significant tension with �CDM? In Figure 5,
we plot the (unbiased, SZ-derived) mass vs. redshift for
all 26 clusters and overplot exclusion curves from Mor-
tonson et al. (2010). Those curves represent the mass
and redshift above which an individual cluster would be
less than 5% likely to be found in a given survey region
in 95% of the �CDM parameter probability distribution.
We plot one exclusion curve for the least likely cluster al-
lowed in a 2500 deg2 survey and one curve for the least
likely cluster allowed in the entire sky. It is clear that
with the SZ-derived, unbiased masses, no cluster in our

Fig. 5.— A Mortonson et al. (2010)-style plot showing the mass
M200(�mean) and redshift of the clusters presented in this paper.
Some of the most extreme objects in the catalog are annotated with
the R.A. portion of their object name. The red solid line shows
the mass above which a cluster at a given redshift is less than
5% likely to be found in the 2500 deg2 SPT survey region in 95%
of the �CDM parameter probability distribution. The black dot-
dashed line shows the analogous limit for the full sky. The blue
open data point (redshift slightly o⇥set for clarity) denotes the
mass estimate for SPT-CL J2106-5844 from combined X-ray and
SZ measurements in Foley et al. (2011). That work concludes that
this cluster is less than 5% likely in 32% of the �CDM parameter
probability distribution, and we show the corresponding Mortonson
et al. (2010) p = 32% limiting mass vs. redshift as the dashed blue
line.

sample is individually in strong tension with �CDM.
This result can be compared to the result of Foley et al.

(2011), in which the single cluster SPT-CL J2106-5844
is found to be less than 5% likely to exist in the 2500
deg2 SPT survey region in 32% of the �CDM parameter
probability distribution. There are some di⇥erences in
the two analyses, the most important of which is that
Foley et al. (2011) use a mass estimate that combines
SZ and X-ray data, whereas this work only reports an
SZ-derived mass. The central value of the Foley et al.
(2011) combined SZ/X-ray mass estimate is 30% higher
than the central value of the SZ-derived mass reported
here. We have included the Foley et al. (2011) combined
mass as a point in Figure 5, and we have also plotted the
Mortonson et al. (2010) exclusion curve corresponding to
< 5% likelihood of finding a cluster in the SPT survey
in 32% of parameter probability. As expected from the
result in Foley et al. (2011), the p = 32% exclusion curve
nearly intersects the central SPT-CL J2106-5844 mass
value from that work.

7.2. Extensions to �CDM

While no individual cluster lies above either p = 95%
exclusion line in Figure 5, there are several which come
reasonably close and whose central mass values lie within
1� of the p = 32% exclusion curve for the 2500 deg2 SPT
survey. One might imagine that the collective “unlike-
lihood” of these clusters could indicate the need to go
beyond the standard �CDM cosmological model. The

most massive SPT clusters
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Fig. 8.— Assuming a �CDM cosmology with a primordial
non-Gaussianity characterized by the parameter fNL, the two-
dimensional marginalized constraints on �8 and fNLusing the
CMB+SPTCL data set (blue). Contours show the 68% and 95%
confidence regions. We only consider the a⇥ect of fNL on the
SPTCL data set. We measure fNL= �192 ± 310, consistent with
zero non-Gaussianity.

Our results are consistent with Williamson et al. (2011)
which used the 26 most massive clusters in the full 2500
deg2 SPT-SZ survey to constrain fNL= 20 ± 450. Our
work di⇤ers from Williamson et al. (2011) in that we use
a much smaller area of the SPT-SZ survey, we select clus-
ters down to a lower ⇥ threshold, and we use an improved
mass calibration.

6. SOURCES OF UNCERTAINTY

Previous SPT cluster survey results, namely V10 and
Williamson et al. (2011), found cosmological constraints
that were limited most significantly by the cluster mass
calibration, or equivalently the fractional uncertainty in
ASZ . In this work, we have reduced this uncertainty
by incorporating the external mass calibration from the
YX �M500 relation using X-ray observations of the SPT
clusters. We can directly estimate the impact of the
uncertainties in the X-ray and SZ scaling relations by
importance sampling the MCMC chains, where we post-
process the chains by imposing a narrow prior on each
scaling relation parameter centered around the best-fit
value. The resulting increase in precision on the cosmo-
logical parameters allows a measure of the impact from
the uncertainty in the scaling relations. In this way, we
e⇤ectively “fix” the X-ray and scaling relation param-
eters, a process which we will implicitly be referring to
throughout this section. For a wCDM cosmology, we also
consider the impact of the SNe systematic uncertainty on
the cosmological results presented here.
With enough SZ and X-ray observations, we expect

the � � M500 calibration to be limited by the calibra-
tion of the YX �M500 relation because the latter has
tighter external priors. In practice, there will be an ad-
ditional uncertainty in the ��M500 calibration from the
limited number of SZ and X-ray observations for cross-
calibration, and this uncertainty will also degrade the
cosmological constraints. We wish to separate this ef-

fect, which we will refer to as the SZ-YX scaling uncer-
tainty, from the additional systematic uncertainty from
the YX �M500 calibration, which we will refer to as the
X-ray scaling uncertainty, and the statistical uncertainty
from the cluster sample size. By fixing the X-ray and SZ
scaling relation parameters, as described above, we can
measure the impact of the SZ-YX scaling uncertainty, X-
ray scaling uncertainty, and statistical uncertainty on our
cosmological constraints.

6.1. �CDM Cosmology: Scaling Relation Uncertainty

We first consider the �CDM constraints using the
SPTCL+H0+BBN data set, the results of which were
described in Section 4. This data best constrained the
combination of ⇤8(⇥m/0.25)0.30 = 0.785 ± 0.037. The
sources of uncertainty for this result are summarized in
Table 6, and are discussed below.
For the X-ray scaling relation parameters, only the un-

certainty in AX and CX , the normalization and redshift
evolution parameters, contribute significantly to the un-
certainty on ⇤8(⇥m/0.25)0.30. Fixing each parameter
separately implies that they contribute an uncertainty
on ⇤8(⇥m/0.25)0.30 of ±0.022 and ±0.015, respectively.
It is not surprising that the normalization of the mass
calibration significantly a⇤ects the constraints, and the
redshift evolution can be understood for similar reasons.
For a cluster at the median redshift of the SPT sam-
ple, z = 0.74, the prior on the CX value e⇤ectively con-
tributes an additional 7% to the cluster mass calibra-
tion. This can be compared to the 10% mass calibration
uncertainty from the prior on AX . Fixing all X-ray pa-
rameters simultaneously, implies that they contribute an
uncertainty on ⇤8(⇥m/0.25)0.30 of ±0.028.
For the SZ scaling relation parameters, only the uncer-

tainty in ASZ contributes significantly to the uncertainty
on ⇤8(⇥m/0.25)0.30. Fixing all the SZ scaling parame-
ters, we measure an uncertainty on ⇤8(⇥m/0.25)0.30 of
±0.023 from statistical uncertainty, ±0.010 from the SZ-
YX scaling uncertainty, and ±0.028 due to X-ray scal-
ing uncertainty (as discussed above). The relatively low
contribution from the SZ-YX scaling uncertainty is not
surprising considering the constraints on the fractional
uncertainty of ASZ , which was near the systematic limit
of 14% imposed by the YX �M500 calibration.
Therefore, the �CDM constraints are nearly at the sys-

tematic limit from the calibration of the YX �M500 re-
lation. For our constraint of ⇤8(⇥m/0.25)0.30 = 0.785 ±
0.037, the X-ray scaling and statistical uncertainty con-
tribute almost equal amounts of ±0.028 and ±0.023, re-
spectively. By only increasing the cluster sample size
we could reduce the uncertainty by up to ⇥ 1.3 (⇥
0.037/0.028). Further improvements would require a
more accurate cluster mass calibration.

6.2. wCDM Cosmology: Scaling Relation and SNe
Uncertainty

We next consider the sources of uncertainty for
the wCDM cosmology discussed in Section 5.1. We
will concentrate on using the SPTCL+H0+BBN and
CMB+BAO+SNe+SPTCL data sets, which produce con-
straints of w = �1.09 ± 0.36 and w = �0.973 ± 0.063,
respectively. The sources of uncertainty for this result
are summarized in Table 6, and are discussed below.

fNL = -192 ± 310

(Benson et al 2011)

Fig. 30.— SPT-CL J2337-5942 at zspec = 0.775. Spitzer/IRAC [3.6] and Magellan/IMACS f/2 ig images are shown in the optical/infrared
panel.

Fig. 31.— SPT-CL J2344-4243 at zrs = 0.62. Blanco/MOSAIC-II irg images are shown in the optical/infrared panel.

SPT clusters



Are we done? Can we do better?

• Marcello (and others!) is (are!) hard at work finding 
ultimate analytic formula!

•``Extended Press-Schechter” approaches work for non-
local forms too (Wagner, Verde, Boubekeur)

• Same analytic expression in terms of cumulants works 
well for fNL, gNL, τNL (which are different shapes)

• Lots of challenges for non-Gaussianity with clusters -- 
but the data exists/will arrive! (and these challenges 
aren’t different from constraining dark energy with 
clusters)


