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Single-field inflation

On previous days we heard a lot about single-clock inflation.

This models are nice because the correlation functions
have a simple structure.

Pimentel, Senatore & Zaldarriaga (2012); Senatore & Zaldarriaga (2012)
Assassi, Baumann & Green (2012)
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Figure A1. All-scalar loop correction from the V 000 vertex, common to all scalar field
models of inflation.

interactions involving gauge fields are well behaved in this sense [15]. In the present

case, although the electromagnetic part of the interaction would be “dangerous” (in

Weinberg’s sense) as part of a scalar interaction because it involves time derivatives, it

does not produce fast divergences. Indeed, the only e↵ect of di↵erentiation with respect

to time when applied to a mode of the gauge field is to introduce factors of the slowly

varying parameter ⌦. Such factors merely set the scale of the interaction, rather than

changing the character of the time dependence, as would be the case for a scalar mode.
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Appendix A. Scalar loop corrections from the V 000
vertex

In this Appendix, I compute the scalar loop correction coming from a simple V 000 vertex.

This loop correction is common to any inflationary model, and arises simply from the

self-interactions implied by the scalar potential, unless V 000 is somehow tuned to be zero.

This loop correction corresponds to the diagram in Fig. A1, with two external scalar

legs which are connected by a loop of circulating virtual scalar quanta. Just like the

processes considered in the main text, this diagram comes in four di↵erent types labelled

by the + or � flavours at each vertex, giving complex conjugate pairs (+, +), (�,�)

and (+,�), (�, +).

The loop process described by Fig. A1 has already appeared in the literature, and

has been the subject of detailed study by several previous authors. van der Meulen &

Smit [62] studied this loop for both large and small internal momenta, finding corrections

to the classical time dependence. These corrections are one possible source of the

“quantum logarithms” described in the Introduction (§1). Bartolo et al. [25] considered
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(For me, that means inflation with multiple active, light fields.)
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We assumed these fields were light, so m↵�

H2
⌧ 1

By the end of inflation N ≈ 60,
so you might think we can get a good estimate from

this linear approximation.
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By the end of inflation N ≈ 60,
so you might think we can get a good estimate from

this linear approximation.
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0.05

0.10

0.15

0.20

Sjj

HH*L2
The linear approximation is poor 
by N = 10

It is totally wrong, even 
qualitatively, for N ≳ 10

⌃��
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If the linear term is important, you are just on the cusp
of every other power becoming important.

So, for multiple fields, it is harder to compute correlation functions.
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If the linear term is important, you are just on the cusp
of every other power becoming important.

So, for multiple fields, it is harder to compute correlation functions.

Slice of fixed energy

Spatially flat sliceSpatially flat slice

+ve energy
fluctuation

–ve energy
fluctuation

More efolds to
dilute to a fixed

value

Fewer efolds to
dilute to a fixed
value

�N < 0�N > 0
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The δN method tells us how to handle this time dependence

�N = �[N(�, ⇢, · · · )] = @N
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Lyth & Rodríguez (2005)

Although no-one doubts this formula, it has never been
demonstrated to be correct.
So, what do I do if I am dealing with a different model?

… maybe I want to include loop corrections?

… interesting models may have nontrivial kinetic sector, for which
the δN formula may not apply. Maybe I’m interested in these?
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(a) Propagator

� [time ⌧ ]

↵ [time ⌧ ] � [time ⌧ ]

[time ⌘]

(b) Three-point
function

[time ⌘]

(c) Vertex integral

Figure 3: Structure of the three-point function as a ‘vertex integral’ over individual wavefunction factors. Fig. 3a
depicts the propagator, which is a product of one conjugated wavefunction (dashed line) and one unconju-
gated wavefunction (solid line). The cross denotes contraction of these factors by matrix multiplication. In
Fig. 3b, three ‘internal’ factors participate in an integral over the vertex whereas the three ‘external’ factors
do not. Note that the time at the vertex, ⌘, is always earlier than the external time ⌧ . In Fig. 3c we show
the vertex integral with these external factors removed.

to each half of the propagator are contracted with each other. In Fig. 3a we depict the
conjugated mode w⇤

↵� as a dashed half-line, and the unconjugated mode w↵� by a solid half-
line. The index contraction is denoted by a cross joining the dashed and solid halves. With
these conventions, the three-point function can be depicted as in Fig. 3b. The external,
conjugated mode functions (dashed lines) are evaluated at some time ⌧ which is taken to be
later than the time ⌘ associated with the internal vertex. Finally in Fig. 3c we show the
3-point function with these external, conjugated wavefunction factors removed. The rules of
the ‘in–in’ formulation of quantum field theory (see Appendix A) show that the full three-
point function should be obtained by adding Fig. 3b and its complex conjugate. Therefore
the three-point function has the structure

h��↵(k1)���(k2)���(k3)i⌧ = 2Re
h

w⇤
↵�(k1, ⌧)w

⇤
�µ(k2, ⌧)w
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i

, (3.7)

where the vertex integral I�µ⌫ corresponds to Fig. 3c and is determined using the methods
of the in–in formalism. It represents the cumulative amplitude for three-body interactions
up to time ⌧ , and is given by an integral over the internal wavefunctions (which measure the
probability of three particles interacting at a point), weighted by geometrical factors (which
measure the volume in which the interaction can take place) and terms representing the
detailed structure of each three-body interaction.

External wavefunction divergences. The discussion in §3.1 shows that although each
wavefunction w↵�(k, ⌧) contains ‘divergent’ logarithms as ⌧ ! 0, these are absorbed into
the form-factor �↵i in the combination �↵j(⌧, kf

)wji(k,�k�1
f

). (Here, the wavefunction wji

is evaluated at the horizon-crossing time for the factorization scale k
f

.) In concrete terms,
although the ‘divergent’ logarithms in wij(k,�k�1

f

) now appear as powers of ln k
f

, the com-
bination �↵j(⌧, kf

)wji(k,�k�1
f

) is independent of k
f

. Therefore these ‘divergent’ logarithms
cancel. Meanwhile, the overall ⌧ -dependence is determined by the solution to the renormal-
ization group equation (3.5) and does not suffer from the appearance of ‘divergent’ terms.
The same applies to w⇤

↵� provided we arrange for the phase of w↵� to be constant at late
times.

We now generalize this to the three-point function. Consider the combination
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Time dependence from
external wavefunctions

 (k, ⌧) = (1 + ik⌧)e�ik⌧
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Time dependence from
external wavefunctions

3-body “collision integral”

 (k, ⌧) = (1 + ik⌧)e�ik⌧

Z
dt a(t)3 (k1, ⌧) (k2, ⌧) (k3, ⌧)
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Two-step strategy, borrowed from QCD

1. Including masses perturbatively, argue that logarithmic
divergences can only be produced in combination with
certain functions of the external momenta

⇣
1 + ✏⇤ ln(�k⇤⌧) + · · ·

⌘
⇥ fi(k)

Dias, Ribeiro & DS arXiv:1210.7800
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Two-step strategy, borrowed from QCD

1. Including masses perturbatively, argue that logarithmic
divergences can only be produced in combination with
certain functions of the external momenta

2. Write renormalization-group equations for the unknown
coefficients

⇣
1 + ✏⇤ ln(�k⇤⌧) + · · ·

⌘
⇥ fi(k)

Unknown function Only a finite number
of these

We require a guarantee that we only need a finite number of unknown
functions to do this — the analogue of renormalizability.
Here it is the statement that correlation functions factorize.

Dias, Ribeiro & DS arXiv:1210.7800
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In conventional models you can show this reproduces the
usual δN formula to leading-logarithm order.
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In conventional models you can show this reproduces the
usual δN formula to leading-logarithm order.
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García-Bellido & Wands (1996)
Bernardeau & Uzan (2002)

The RGE can be interpreted as an 
evolution equation for each Jacobi 
field of the flow.

Then we have to track the 
correlation functions along the flow, 
à la Callan-Symanzik equation, 
critical phenomena, …

Yokoyama, Suyama & Tanaka (2007)
DS, Mulryne, Frazer & Ribeiro (2012)

Wednesday, 7 November 12



S = �1

2

Z
d4x

p
�g

�
M

2
PR+G↵�@a�

↵
@b�

� + 2V
�

Example: nontrivial kinetic term

Nakamura & Stewart (1996)
Nibbelink & van Tent (2002)

Tegmark & Peterson arXiv:1111.0927
Elliston, DS & Tavakol arXiv:1208.6011

McAllister, Renaux-Petel & Xu (2012)

��⇤
↵

��↵

Wednesday, 7 November 12



S = �1

2

Z
d4x

p
�g

�
M

2
PR+G↵�@a�

↵
@b�

� + 2V
�

Example: nontrivial kinetic term

Nakamura & Stewart (1996)
Nibbelink & van Tent (2002)

Tegmark & Peterson arXiv:1111.0927
Elliston, DS & Tavakol arXiv:1208.6011

McAllister, Renaux-Petel & Xu (2012)

��⇤
↵

Now there are contributions
from what would be
geodesic deviation in spacetime

��↵

Potential flow

Geodesic flow

Wednesday, 7 November 12



S = �1

2

Z
d4x

p
�g

�
M

2
PR+G↵�@a�

↵
@b�

� + 2V
�

Example: nontrivial kinetic term

��⇤
↵

��↵

Potential flow

Geodesic flow

Wednesday, 7 November 12



S = �1

2

Z
d4x

p
�g

�
M

2
PR+G↵�@a�

↵
@b�

� + 2V
�

Example: nontrivial kinetic term

��⇤
↵

��↵

1

3

D2�↵

dN2
+

D�↵

dN
+

G↵�V,�

3H2
= 0

Each trajectory is a solution of

�

⇢
1

3

D2�↵

dN2
+

D�↵

dN
+

G↵�V,�

3H2

�
= 0

Each infinitesimal connecting
vector is a solution of

Potential flow

Geodesic flow

Wednesday, 7 November 12



S = �1

2

Z
d4x

p
�g

�
M

2
PR+G↵�@a�

↵
@b�

� + 2V
�

Example: nontrivial kinetic term

��⇤
↵

��↵

1

3

D2�↵

dN2
+

D�↵

dN
+

G↵�V,�

3H2
= 0

Each trajectory is a solution of

�

⇢
1

3

D2�↵

dN2
+

D�↵

dN
+

G↵�V,�

3H2

�
= 0

Each infinitesimal connecting
vector is a solution of

1

3
R↵

�µ⌫
d��

dN

d�µ

dN
��⌫

Potential flow

Geodesic flow

Wednesday, 7 November 12



D⌃↵�

dN
= w↵

�⌃
�� +w�

�⌃
�↵

D↵↵|�

dN
= w↵

�a�|�� +w�
�a↵|�� +w�

�a↵|�� +w↵
�µ⌃��⌃µ�

w↵� = � V↵�

3H2
+

1

3H2

1

a3
D

dt

✓
a3

H
�̇↵�̇�

◆
+

1

3
R↵�µ�

�̇�

H

�̇µ

H

w↵�� = r(↵w��) +
1

3

 
r(↵R�|�µ|�)

�̇�

H

�̇µ

H
� 4R↵(��)�

�̇�

H

!

h��↵(k1)���(k2)���(k3)i ⇠
a↵|��
k32k

3
3

+
a�|↵�
k31k

3
3

+
a�|↵�
k31k

3
2

We get relatively simple evolution equations
which account for the geodesic deviation effect

where

Elliston, DS & Tavakol arXiv:1208.6011
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Initially the trajectories keep close to each other
Ridge

Ridge
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Initially the trajectories keep close to each other

Eventually they disperse nonlinearly
away from the ridge

Ridge

Ridge
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Ridge

Ridge

Start with a gaussian distribution
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Ridge

Ridge

Start with a gaussian distribution

The gaussian is preserved in the early phases

Eventually a few trajectories slide away down
the hillside, generating a heavy tail
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Ridge

Ridge

Eventually a few trajectories slide away down
the hillside, generating a heavy tail

These are all excursions to larger kinetic 
energy, smaller potential energy. Hence, 
there is less expansion, so negative δN

This skews the distribution to negative δN, 
so gives negative fNL
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Something similar happens when
converging into a valley
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Something similar happens when
converging into a valley

W =
1

2
m2

��
2 + g0�+

1

2
m2

��
2

Direction of valley floor

�

�

� =
�̇

�̇
Define

Initially � � 1
At the turn

� ⇠ 1

fNL ⇠ ⌘⇤�⇤

At the peak

The peak fNL is achieved before the turn,
as for the ridge.
What happens afterwards is model 
dependent. Either fNL can decay, making 
a spike as before, or it can plateau.
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Something similar happens when
converging into a valley

W =
1
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Direction of valley floor
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fNL ⇠ ⌘⇤�⇤

At the peak

This time, the “uphill” edge of the bundle 
is compressed towards the centre, which 
again generates a heavy tail on the 
“downhill” side.
This enhances excursions to positive δN, 
giving positive fNL.
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Something similar happens when
converging into a valley

W =
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2 + g0�+

1
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Direction of valley floor
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�
fNL ⇠ ⌘⇤�⇤

At the peak

This time, the “uphill” edge of the bundle 
is compressed towards the centre, which 
again generates a heavy tail on the 
“downhill” side.
This enhances excursions to positive δN, 
giving positive fNL.

In both cases, fNL inherits its 
sign from a local η 

parameter, enhanced by a 
large dimensionless factor
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Initially fNL is very small, ≈ ε

Analytic approximation Numerical calculation

Rolling off the axion ridge 
generates a negative spike

Rolling into the valley
generates a positive spike

Finally, there is a
plateau
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If the initial conditions populate 
only the quadratic part of the
cosine, then the answer was
worked out by
Battefeld & Easther/
Easther & McAllister

Alabidi & Lyth (2006), Kim & Liddle (2006),
Battefeld & Easther (2006), Battefeld & Battefeld (2007)

fNL is small because of a 
central-limit-like effect
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If we also populate the hilltop
region, then its fluctuations 
tend to dominate ζ. Therefore, 
arguments based on the
central limit theorem no
longer apply
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Kim, Liddle & DS (2010)

In this case, the value to which 
fNL converges can be 
appreciable.
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This field sticks at the
top until H decays
sufficiently
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ki with well-defined limits,

finite everywhere
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It turns out that

⇡ 20

Now,

So, when the attractor is reached and any fNL generated
by shear, divergence, focusing, etc., has decayed,

fNL asymptotes to a rather large number
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Conclusions

Can recover δN formula directly from the underlying quantum field 
theory.
[Caveats: leading logarithm approximation; perturbative in mass]

Naturally leads to an interpretation in terms of flows
à la Callan-Symanzik equation

Typical multiple field models generate nongaussianity through 
dispersion from a ridge
focusing into a valley
inheritance from a subdominant field [similar to curvaton]

For inflation, these all seem to require some form of hierarchy in 
their initial conditions.
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