Bayesian inference of matter, velocity fields and power spectra from galaxy redshift surveys

Metin Ata ${ }^{1}$
${ }^{1}$ mata@aip.de
Advisors: Francisco-Shu Kitaura (FSK), Volker Müller (VM)
Leibniz-Institut für Astrophysik Potsdam (AIP)

ARGO-CODE combined Hamiltonian and Gibbs-sampling including stochastic nonlinear power-law bias (and second order nonlocal bias in prep)
$\mathcal{P}\left(\delta,\left\{r^{o b s}\right\}, w, \mathbf{c} \mid\left\{s^{o b s}\right\}, m(\alpha, \delta),\left\{b_{p}\right\}, f_{\Omega}\right)$

$$
\begin{aligned}
\delta & \curvearrowleft \mathcal{P}\left(\delta \mid N\left(\left\{r^{\mathrm{obs}}\right\}\right), w, \mathbf{c},\left\{b_{p}\right\}\right), \\
\left\{r^{\mathrm{obs}}\right\} & \curvearrowleft \mathcal{P}\left(\left\{r^{\mathrm{obs}}\right\} \mid\left\{s^{\mathrm{obs}}\right\},\left\{\mathbf{v}\left(\delta, \mathbf{H}(\delta), f_{\Omega}\right)\right\}\right), \\
w & \curvearrowleft \mathcal{P}\left(w \mid\left\{r^{\mathrm{obs}}\right\}, m(\alpha, \delta)\right), \\
\mathbf{c} & \curvearrowleft \mathcal{P}(\mathbf{c} \mid \boldsymbol{\Phi}(\delta)) .
\end{aligned}
$$

galaxy bias model $\quad \rho_{\mathrm{G}}=\gamma \rho_{\mathrm{M}}^{\alpha} \Theta\left(\rho_{\mathrm{M}}-\rho_{\mathrm{th}}\right)$

RSD corrections in collaboration with Raul Angulo, Carlos Hernandez Monteagudo, Sergio Rodriguez-

Torres, Chia-Hsun Chuang, Francisco Prada

Tests on accurate BOSS BigMultiDark mock catalogs and application to BOSS DR12 in collaboration with Sergio Rodriguez-Torres, Chia-Hsun Chuang, Francisco Prada+BOSS collab.

Results of Power-spectrum sampling on light-cone BOSS DR12:

BOSS DR12 data

Power spectrum

A study of Eulerian and Lagrangian stochastic and nonlocal bias

Mathieu Autefage

Advisor: Francisco-Shu Kitaura (FSK)
Leibniz-Institut für Astrophysik Potsdam (AIP) in collaboration with Christian Wagner \& Raul Angulo

We use the PATCHY code and include second order nonlocal bias
Dark matter field from ALPT with PATCHY

No relevant effect in the BAO shift seen for LRG-like haloes. We plan to investigate three point statistics.

corresponding
second order nonlocal bias
成

Bias model including the second order nonlocal tidal field term

$$
\rho_{\mathrm{h}}=\gamma \Theta\left(\rho_{\mathrm{M}}-\rho_{\mathrm{th}}\right)\left[\rho_{\mathrm{M}}^{\alpha}+\mathrm{c}_{\mathrm{NL}} \mu^{(2)}\right]\left(\rho_{\mathrm{M}}-\rho_{\mathrm{th}}\right)^{\epsilon}
$$

Stochastic bias for eLG-like haloes

Eulerian nonlocal bias for eLG-like haloes

Observational progress on all-sky large-scale structure of the Universe New photometric redshift catalogs from 2MASS, WISE and SuperCOSMOS

Maciej Bilicki ${ }^{1,2,3, *}$, John Peacock ${ }^{4}$, Thomas Jarrett ${ }^{2}$, Michelle Cluver ${ }^{5}$ et al. ${ }^{6}$

- We cross-matched the largest all-sky galaxy samples to construct new photometric redshift catalogs
- The 2MASS Photometric Redshift catalog (2MPZ): a million galaxies with a median $\mathrm{z}=0.08$ over 95% of sky
- New WISE \times SuperCOSMOS photo-z sample of $\mathbf{2 \times 1 0 ^ { 7 }}$ galaxies on 75% of sky has $\langle\mathrm{z}\rangle=0.2$, reaching up to $\mathrm{z} \sim 0.45$
- Our photo-z's have accuracy of $\boldsymbol{\sigma}_{\mathbf{z}} \mathbf{= 0 . 0 1 3}$ for 2 MPZ and $\mathbf{0 . 0 3 3}$ for WISE \times SCOS, and very low number of outliers
- These catalogs are being applied to various cosmological tests such as cross-correlations with other all-sky data

2MPZ color-coded by photometric redshift

Redshift distributions for three all-sky samples

Bilicki et al. 2014a,b; 2015 in prep.
${ }^{1}$ Leiden University, the Netherlands • ${ }^{2}$ University of Cape Town, South Africa • ${ }^{3}$ University of Zielona Góra, Poland

Can we observe relativistic redshift-space distortions in forthcoming galaxy surveys?

M. Borzyszkowski, D. Bertacca and C. Porciani (AlfA, Bonn University)

Galaxy correlations on large scales.

- Implement relativistic redshift-space distortions through particle shifting in numerical simulations.
- Can we measure them? Yes, with statistical significance of 10σ (full-sky) and 5σ (EUCLID-like survey)

Constraints on the Early and Late Integrated Sachs-Wolfe effects after Planck 2015

Giovanni Cabass, Martina Gerbino, Elena Giusarma, Alessandro Melchiorri, Luca Pagano, and Laura Salvati
in preparation

Planck $T T+$ lowP data are consistent with a non-zero early ISW, with a 1σ evidence of $A_{\text {eISW }} \neq 1$ that is stable under the most common extensions of the $\Lambda \mathrm{CDM}$ model.

$A_{\text {eISW }} \rightarrow 1$ through its degeneracy with $\Omega_{\mathrm{b}} h^{2}$ and n_{s}, which return in agreement with the $\Lambda \mathrm{CDM}$ best fit when polarization is included.

Recent Planck polarization data at high ℓ erase the evidences for a nonstandard value of $A_{\text {eISW }}$.

Planck data place a constraint $A_{\text {lISW }} \lesssim 1.1$ at 95% c.l. When supplemented with a prior on $A_{l \text { lSW }}$ (coming from CMB temperature anisotropiesweak lensing correlations) $\Rightarrow A_{l \mathrm{lSW}}=0.85 \pm 0.21$ ($\sim 4 \sigma$ detection).

Isabella Paola Carucci (Sissa-Trieste)

The imprint of warm dark matter on the 21 cm power spectrum: forecasts for SKA

In collaboration with Matteo Viel and Francisco Villaescusa-Navarro (Trieste Observatory)

WDM: suppression of power at small scales,

> What happens to the 21 cm signal in WDM cosmologies?

The 21 cm power spectrum gets boosted at all scales!

SKA1-LOW with $5 k$ hour observation time can constrain competitively the warmness of DM by measuring the 21 cm power spectrum (intensity mapping)

Chi-Ting Chiang (MPA \rightarrow Stony Brook)

Position-dependent power spectrum: obtaining the squeezed-limit bispectrum without measuring it

A Numerical Perspective on Helium Reionization

Where we started:

S Suite of cosmological AMR hydrodynamic simulations

- Source model calibrated against observations

Bimodal distribution of T during Hell reionization

Redshift evolution of the Hell effective optical depth.

What we have found:

- Temperature bimodality
- Observed population of AGNs can ionize most of the He in the IGM by z ~ 3 - Imprint on HI Lya forest

JOSÉ FONSECA - UNIVERSITY OF THE WESTERN CAPE IN COLLABORATION WITH STEFANO CAMERA, MÁRIO SANTOS AND ROY MAARTENS

HUNTING DOWN HORIZON-SCALE EFFECTS WITH MULTI-WAVELENGTH SURVEYS

Higher-order massive neutrino perturbations in large-scale structure

Florian Führer (ITP Heidelberg)

```
Based on: FF, Yvonne Y. Y. Wong JCAP 1503 (2015) 046 arXiv: 1412.2764
```

- Massive neutrinos contribute to non-relativistic matter $f_{\nu}=O(5 \%)$

- No satisfactory satisfactory non-liner approach exists
- A new first principle approach
- Closed formal equation for density
- No expansion in $\frac{f_{\nu}}{f_{C D M}}$
- Also applicable to Warm Dark Matter cosmologies
- Tested common approximations
- Qualitatively good agreement for the total matter bispectrum
- Fail for the neutrino bispectrum

Warm Dark matter: constraints from Lyman a forest

Uniessiteit teieden A. Garzilli, A. Boyarsky, O. Ruchayskiy and M. Viel

INSTITUUT LORENTZ

Redshift-binned parametrization on IGM thermal history

The high resolution data in (Viel et al 2013)
CANNOT CONSTRAIN WDM better than previous constraints from SDSS
updated constraints: $m_{\text {WDM }} \geq 2 \mathrm{keV}$

Weak Lensing by Galaxy Troughs in DES Science Verification Data Daniel Gruen, LMU Munich

underdense regions in the projected galaxy field

Measuring the growth rate of structure around cosmic voids in VIPERS

Adam J. Hawken

Osservatorio Astronomico di Brera, INAF, Merate/Milano
Full VIPERS

This project has received funding from the European Union's Seventh Framework Programme for research, technological
development and demonstration under grant agreement no 291521

Non-local bias contribution to galaxy 3-point correlations

Kai Hoffmann, Julien Bel, Enrique Gaztañaga (MNRAS, 2015, 447, 1724; MNRAS, 2015, 450, 1674; arXiv:1504.02074)

- first non-local bias measurement in real space

- new method for accurate linear bias measurement from 3pc
- comparison of lin.\&quad. bias
- measurements:
$\delta_{\mathrm{m}}-\delta_{\mathrm{g}}, 2 \mathrm{pc}, 3 \mathrm{pc}, 3 \mathrm{rd}-$ order correlators
- predictions: peak-background split
bias comparison

log (halo mass [Msun/h])

Effective Field Theory with CAMB

B. Hu, M. Raveri

Google
N. Frusciante, A. Silvestri

- unify description single scalar field DE/MG by using EFT language
-selected by Planck and Euclid
- New release updated with Planck-2015 likelihood is coming soon

Reconciling Planck cluster counts and cosmology?

Chandra/XMM instrumental calibration and hydrostatic mass bias Holger Israel (Durham University)

Conclusion: Given the Planck cluster masses, if an (unlikely) uncorrected ~ 20 per cent calibration bias existed, this tension would be eased, but not resolved.

Please talk to me or write to: holger.israel@durham.ac.uk

图 Durham
University

Towards fast and accurate massive galaxy mocks using Lagrangian methods Albert Izard Martin Crocce Pablo Fosalba Institut de Ciencies de 1 Espai, IEFC-CSIC CeIEECI Csic

The COLA method:

$$
\partial_{t}^{2} \boldsymbol{x}_{\mathrm{res}}(t)=-\nabla \Phi(t)-\partial_{t}^{2} \boldsymbol{x}_{\mathrm{LPT}}(t)
$$

See halo clustering in real and redshift space in the poster

Generating fast and accurate mock galaxy catalogues of low mass galaxies Jun Koda

INAF - Osservatorio Astronomico di Brera / DARKLIGHT

COLA 10 time-step simulation

600 Mock galaxy catalogues for WiggleZ survey
About 1\% accuracy in power spectra

Constraining Coupled Dark Energy by using the Spin Alignments in Galaxy Pairs

Hanwool Koo, Jounghun Lee (Seoul National University)

Numerical results

Observational result

Contact: Hanwool Koo (Graduate student) khw@astro.snu.ac.kr

Redshift space distortions
with the truncated Zel'dovich approximation
Michael Kopp ${ }^{1}$ with Cora Uhlemann ${ }^{2,3}$ and Ixandra Achitouv ${ }^{4}$

Cold imprint of supervoids in the CMB reconsidered with Planck and BOSS

András Kovács \& Benjamin R. Granett

Angular Momentum Properties of Haloes in

 the Illustris Simulation J. Krzyszkowska, V. Springel, in prep.

What causes the baryonic spin to be different from the dark matter spin?

Precision measurement of the local bias of dark matter halos

 Titouan Lazeyras

 Titouan Lazeyras}
with C. Wagner, T. Baldauf and F. Schmidt

Optimization of $k S Z$ measurements with a reconstructed cosmological flow field

Ming Li NAOC CHINA
cluster samples
CMB maps
$\hat{\Psi}(\boldsymbol{k})=\sigma^{2} \frac{\hat{\imath}(\boldsymbol{k}) \hat{B}(\boldsymbol{k})}{P(\boldsymbol{k})}, \sigma^{2}=\left[\int \frac{|\hat{t}(\boldsymbol{k}) \hat{B}(\boldsymbol{k})|^{2}}{P(\boldsymbol{d})} \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}}\right]$
K200
extra velocity field from LSS survey

$$
\boldsymbol{v}(\boldsymbol{k})=-\boldsymbol{i} \beta(z) H_{0} \delta_{\mathrm{g}}(\boldsymbol{k}) \frac{\boldsymbol{k}}{k^{2}}
$$

Vrec

$$
\begin{gathered}
\alpha_{i}=-\frac{c}{\sigma_{T} f_{\mathrm{b}} \mu} \frac{K_{200, i}}{M_{200}} \frac{1}{v_{\mathrm{rec}, i}} \\
\alpha=\frac{\sum_{i} \alpha_{i} w_{i}}{\sum_{i} w_{i}} \sigma_{\alpha}=\left[\frac{1}{\sum_{i} w_{i}}\right]^{1 / 2} \\
w_{i}^{-1}=\left(\frac{1}{v_{\mathrm{rec}, \mathrm{i}}}\right)^{2}\left(\sigma_{\mathrm{kSZ}, \mathrm{i}}^{2}+\sigma_{\epsilon}^{2}+\beta_{\mathrm{fid}}^{2} \sigma_{\mathrm{rec}, \mathrm{i}}^{2}\right)
\end{gathered}
$$

A fast stochastic approach for cosmological constraints using weak-lensing peak counts

A new model to predict WL peak counts:
Fast, Flexible, Full PDF information

A robust and efficient constraining method:
Approximate Bayesian computation

Ed Macaulay e.macaulay@uq.edu.au

Modelling the Large Scale Structure in massive neutrino cosmologies

Elena Massara
SISSA - Trieste - Italy

Supervisors: Ravi Sheth, Matteo Viel
Collaborators: Paul M. Sutter, Francisco Villaescusa-Navarro

Halo detection via large-scale structure inference

Alexander Merson

(+ Jens Jasche, Filipe Abdalla, Ofer Lahav, Benjamin Wandelt, Heath Jones \& Matthew Colless)

- Proof of concept of a Bayesian methodology for halo detection in galaxy survey data.
- Use large-scale structure inference algorithm (HADES) applied to semianalytical galaxy mock catalogue to build maps of halo detection
 probability.

Constraining the Galaxy mass content in cluster cores using

 Strong Lensing and velocity dispersion measurements

