

Results from Planck

Ben Wandelt

Planck results presented on behalf of the Planck collaboration Institute for Astrophysics, Paris (IAP) Lagrange Institute, Paris (ILP) UPMC

Planck

Microwave sky

Planck 2015

Components in the microwave sky

The Planck 2015 temperature map

The Planck 2015 polarization map

Fluctuations larger than 10 degrees have been removed

Health warning

- All results involving 2015 E-polarization are considered preliminary
- The idea is that if E results agree with/ reinforce T results, then it makes us feel good.
- No physics alarm bells ring if T and E do not agree it could well be a residual systematic.
- The final 2016 polarization data set is expected to be much better characterized

Pre Planck 2015 state of the art

Crites et al. 2014

L

Good agreement between CMB and BAO.

BAO provides a geometrical constraint BAO helps tighten the matter density constraints.

A flat universe with dark energy

Neutrino masses

Planck 2015 discovers anisotropies in the neutrino background!

- c_{eff} and c_{vis} parameterize non-ideal fluid:
 - Ideal fluid: (1/3,0)
 - Scalar field: (1,0)
 - Free-streaming particles like neutrinos: (1/3,1/3)

Atomic physics with Planck

- The HI 2s-1s two photon rate is important for recombination dynamics
- Not well determined in the lab (error of ~40%)
- Theory says: $A_{2\rm s \rightarrow 1\rm s}^{\rm theory} = 8.2206 s^{-1}$
- Planck measures $A_{2
 m s
 ightarrow 1
 m s}=7.75\pm0.61s^{-1}$ ~8% error!

Constraints on Inflation

Constraints on Inflation

Polarization breaks isocurvature degeneracies

Isocurvature constraints

 Limits on Cold dark matter isocurvature, neutrino density isocurvature, and neutrino velocity isocurvature are now

 $|\alpha_{\text{non-adi}}| < 1.9\%, 4.0\%$, and 2.9%

 Polarization improved non-Gaussianity constraints on isocurvature modes by large factors.

March 2014

Bicep2 announced a detection of primordial B Polarization at large scale. Large scale B polarization is a signature of the gravitational waves background

BICEP2 B-mode signal

September 2014 Planck 353GHz data predicts that up to 100% of the BICEP2 signal could be dust emission

BICEP2

February 2015

0.00

0.95

0.96

0.97

ns

0.99

1.00

0.98

Beyond the power spectrum

The Planck 2015 temperature map

The Planck 2015 polarization map

Fluctuations larger than 10 degrees removed

Planck 2013

Planck 2015

Beyond the C₁: CMB bispectrum fingerprinting with Planck

NG of *local* type:

- Multi-field models
- Curvaton
- Ekpyrotic/cyclic models

NG of *equilateral* type

Non-canonical kinetic term

2000

- K-inflation
- DBI inflation
- Higher-derivate terms in Lagrangian
 - Ghost inflation
- Effective field theory

NG of *orthogonal* type

- Distinguishes between different variants of
 - Non-canonical kinetic term
 - Higher derivative interactions
- Galileon inflation

Planck 2013 headlines

 Tightest constraints on primordial non-Gaussianity so far: the highest precision test on the origin of cosmic structure

How does the CMB constrain the initial conditions?

Primordial curvature perturbations ζ give rise to the cosmic microwave background anisotropies

Planck 2013

Primordial curvature perturbations give rise to the cosmic microwave background anisotropies

Planck 2015

First constraints on non-Gaussianity with CMB polarization data

- Developed a set of cross-validated optimal or nearoptimal estimators for T, E and T+E:
 - Komatsu Spergel Wandelt (KSW) for local, equilateral, and orthogonal (LEO) and other factorizable templates
 - Binned bispectrum
 - 2 modal bispectrum estimators
- An improved estimator based on Minkowski Functionals for T, E and T+E
- A KSW-style estimator of high-frequency linearly oscillatory features for **T**, **E** and **T+E**

New bispectrum constraints using full mission data

	$f_{\rm NL}({ m KSW})$			
Shape and method	Independent	ISW-lensing subtracted		
SMICA (T) Local Equilateral Orthogonal	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

New bispectrum constraints using full mission data including polarization

Shape and methodSMICA (T) LocalEquilateralOrthogonal	$f_{\rm NL}({\rm KSW})$			
	Independent	ISW-lensing subtracted		
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
SMICA $(T+E)$ LocalEquilateralOrthogonal	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

New bispectrum constraints using full mission data...

	ſ	f _{NL} (KSW)	-		
Shape and method	Independent	ISW-lensing subtracted	- 1		
$\begin{array}{c} \\ \hline \\ SMICA (T) \\ Local \ldots \end{array}$	10.2 ± 5.7	2.5 ± 5.7	Planck 2013		
Equilateral Orthogonal	$ \begin{array}{rrrrr} -13 & \pm & 70 \\ -56 & \pm & 33 \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ISW KSW	-lensing subtr Binned	acted Modal
SMICA $(T+E)$ LocalEquilateralOrthogonal	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.7 ± 5.8 -42 ± 75 -25 ± 39	2.2 ± 5.9 -25 ± 73 -17 ± 41	1.6 ± 6.0 -20 ± 77 -14 ± 42

Constraint volume in LEO space shrunk by factor of 3.

Results are stable as I_{max} increases

Beyond Local, Equilateral, Orthogonal Non-Gaussianity

- The 2015 results contain a greatly enlarged set of analyses of specific templates using the modal estimator
 - Resonant feature models
 - Generalized resonant models
 - Generalized feature models
 - Single field feature models Non-Bunch Davies models
 - ...
- For any hints that appear upon combining T and E remember the health warning that comes with the polarization data in this release.
- New estimator for high-frequency oscillatory features

Linear oscillations

phase-maximized statistic

Linear oscillations

phase-maximized statistic

Linear oscillations – using targeted estimator to extend frequency range

Targeted estimator (MBJW 2014) enables constraints to ~ 10x higher frequency

Linear oscillations – extended frequency range, T+E

Log-oscillations

New estimator based on combinations of linear estimation modes allows estimating "logoscillating" bispectra across the range probed in the power spectrum

Comparison to modal estimator

Preliminary

Bispectrum of a Gaussian simulation

Conclusions

- The Planck has a lasting legacy as
 - a probe of the initial conditions of structure formation
 - the first all-sky view of matter perturbations through gravitational lensing
 - an anchor for "low-"redshift cosmology
- Planck temperature results largely consistent and enhanced with polarization results
- Stay tuned for more to come in the next year!

