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Perturbation theory calculations of 
large-scale structure

Precision theoretical calculations for large-scale structure :
essential ingredient to pursue precision cosmology

Perturbation theory (PT) approach

• tell us how nonlinear systematics are developed through 
the coupling between different Fourier modes

Reducing and/or controlling nonlinear systematics 
(gravity/redshift-space distortions/galaxy biasing)

• valid at large scales in weakly nonlinear regime 

PT kernels



Standard PT kernels

Numerical treatment of standard PT kernels (in modified theories of gravity)

Atsushi Taruya
(Dated: March 23, 2015)

We present a numerical scheme to compute the kernels of standard perturbation theory (PT) up
to the third order in a general context of modified gravity models, whose structure formation is
close to the ΛCDM model (GR). The scheme can be used for the power spectrum calculation at
one-loop order not only in standard PT but also in regularized PT treatment. It is also applied
to the kernel function of power spectrum to study the mode coupling behavior of the nonlinear
gravitational evolution.

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

Under the single-stream approximation, the (CDM+baryon) system can be regarded as a pressureless fuild system,
whose governing equations are

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+ H v +

1
a
(v ·∇) · v = −1

a
∇ψ, (2)

where ψ is the Newton potential, which couples with matter and Brans-Dicke scalar that mediates the fifth force:

1
a
∇2ψ =

κ2

2
ρm δ −

1
2a2

∇2ϕ, (3)

(3 + 2ωBD)
1
a2

∇2ϕ = −2κ2ρm δ − I(ϕ) (4)

with κ2 = 8πG and ωBD being the Brans-Dicke parameter. Here we employ the quasi-static approximation, valid
at the sub-horizon scales. Note that the field ϕ has a nonlinear self-interaction term, I, by which the screening
mechanisms that recovers GR at nonlinear regime can be realized. In our PT framework, it is expanded as

I(ϕ) = M1(k) +
1
2

∫
d3k1d3k2

(2π)3
δD(k − k12)M2(k1, k2)ϕ(k1)ϕ(k2)
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d3k1d3k2d3k3

(2π)6
δD(k − k123) M3(k1,k2, k3)ϕ(k1)ϕ(k2)ϕ(k3) + · · · (5)

The functions Mi are in general model-dependent, and are explicitly given for a given modified gravity model.
Eqs. (1)–(4) are the basic equations for perturbations. In Fourier space, these can be reduced to a more compact

form. Assuming the irrotationality of fluid quantities, the velocity field is expressed in terms of scalar quantity,
θ = ∇ · v/(aH). Then, we have [1],
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Here α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

The function Π characterizes the deviation of the Newton constant from GR, while the quantity S is originated from
the non-linear interactions of the scalaron, which is responsible for the recovery of GR at small scales. The explicit
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form of these are obtained from the Poisson equation and field equation for Brans-Dicke scalar [Eqs. (3)-(5)], and the
expressions relevant for perturbations up to the third oder are respectively given by [1, 2]:
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Here, in deriving the last expression, we perturbatively solve the scalaron field ϕ in terms of δ using Eqs. (4) and (5)
(see Appendix B of Ref. [2] for derivation).

II. SOLVING STANDARD PT KERNELS NUMERICALLY

In this section, we present the evolution equations for PT kernels. Since we are interested in the late-time evolution
dominated by the growing mode, the solution for perturbed quantities δ and θ are expressed as
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where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)
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the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (6), and we will
summarize below the source functions up to the third order.

A. Sounce functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order
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Basic eqs.

single-stream approx.

Kernels (Fn, Gn) are analytically constructed
from recursion relation (e.g., Goroff et al. ’86)

e.g., 
Bernardeau et al. (’02)



Predictions with standard PT kernels

•  resummed PT scheme by Γ-expansion (RegPT, MPTbreeze)

We can do many things with standard PT kernels !!

•  modeling redshift-space distortions (RSD)

Calculations relies on the analytic expressions for kernels
A slight change in basic eqs. makes calculation intractable 

•  modeling galaxy bias

(e.g., modified gravity, massive neutrinos, …) numerical treatment

However,

•  standard PT calculations

(Bernardeau et al.  ’08;  AT, et al. ’12; Crocce et al. ’12)

(e.g.,  AT, Nishimichi & Saito ’10; Reid & White ’11; Vlah et al. ’12;…)

(e.g., McDonald ’06; McDonald & Roy ’08; Saito et al. ‘14)



Previous works
Time-RG

Numerical scheme to solve Closure eqs.

These methods have been especially exploited as improved PT 
schemes

Pietroni (’08); Lesgourgues et al. (’09)

Koyama, AT & Hiramatsu (’09);  Brax & Valageas (’12,’13, ’14); AT et al. (’13, ’14)

Carlson et al. (’09);  Audren & Lesgourgues (’11); Upadhye et al. (’14, ’15)

✓ Application to modified gravity models

✓ Application to massive neutrinos & redshift-space distortions

✓ Public codes (Copter, CLASS, redTime)

Valageas (’07); 
Hiramatsu & AT (’09)

As yet another approach, I develop a simple numerical method 
to reconstruct standard PT kernels (Fn, Gn)

In this talk,



Kernel reconstruction approach
Standard PT kernels as building blocks for various PT predictions

Solving evolution eqs. for PT kernels numerically:

scale factor as 
time variable

2
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Π(k1)Π(k2)

− 1
18Π(k)

(
κ2 ρm

3

)3 ∫
d3k1d3k2d3k3

(2π)6
δD(k − k123)

{
M3(k1, k2, k3) −

M2(k12, k3)M2(k1,k2)
Π(k12)

}
δ(k1)δ(k2)δ(k3)
Π(k1)Π(k2)Π(k3)

(8)

Here, in deriving the last expression, we perturbatively solve the scalaron field ϕ in terms of δ using Eqs. (4) and (5)
(see Appendix B of Ref. [2] for derivation).

II. SOLVING STANDARD PT KERNELS NUMERICALLY

In this section, we present the evolution equations for PT kernels. Since we are interested in the late-time evolution
dominated by the growing mode, the solution for perturbed quantities δ and θ are expressed as

δ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Fn(k1, · · · , kn; t) δ0(k1) · · · δ0(kn),

θ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn; t) δ0(k1) · · · δ0(kn), (9)

where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)

L̂(k) ≡

⎛

⎜⎜⎜⎜⎝

a
d

da
1

3
2

(
H0

H(a)

)2 Ωm,0

a3

{
1 +

1
3

(k/a)2

Π(k)

}
a

d

da
+

(
2 +

Ḣ

H2

)

⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (6), and we will
summarize below the source functions up to the third order.

A. Sounce functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1,k2) G1(k1)G1(k2) +

1
12

(
k12

aH(a)

)2 H4
0

Π(k12)

(
Ωm,0

a3

)2

M2(k1, k2)
F1(k1)F1(k2)
Π(k1)Π(k2)

(13)

nonlinear 
source term

Linear operator

�1
2
�(k1···j ,kj+1···n) Gj(k1, · · · ,kj) Gn�j(kj+1, · · · ,kn)

��(k1···j ,kj+1···n) Gj(k1, · · · ,kj) Fn�j(kj+1, · · · ,kn)
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II. SOLVING PERTURBATION THEORY KERNELS NUMERICALLY
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δ(k; t) = δ(1)(k; t) + δ(2)(k; t) + · · · , θ(k; t) = θ(1)(k; t) + θ(2)(k; t) + · · · , (8)

Since we are particularly interested in the late-time evolution dominated by the growing mode2, the solutions for
perturbations are expressed as
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θ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn; t) δ0(k1) · · · δ0(kn), (9)

where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)

L̂(k) ≡

⎛
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a
d

da
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3
2
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−

(
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aH

)2

a
d

da
+

{
2 +

Ḣ

H2
+

(
cvk

aH

)2
}

⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (7), and we will
summarize below up to the third order:

A. Source functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1, k2) G1(k1)G1(k2) (13)

The source functions given above are symmetric with respect to the exchange of arguments, i.e., S2(k1, k2) =
S2(k2, k1), T2(k1, k2) = T2(k2, k1). Thus, numerically solving Eq. (11), we obtain the symmetrized PT kernel
for F2 and G2.

2 In the presence of effective stress tensor, the late-time evolution may not necessarily be dominated by the growing mode, however, we
here consider the case that the EFTofLSS corrections are small.
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TosolveEqs.(6)and(7),weexpandthequantitiesδandθas

δ(k;t)=δ(1)(k;t)+δ(2)(k;t)+···,θ(k;t)=θ(1)(k;t)+θ(2)(k;t)+···,(8)

Sinceweareparticularlyinterestedinthelate-timeevolutiondominatedbythegrowingmode2,thesolutionsfor
perturbationsareexpressedas

δ(n)(k;t)=
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(2π)3(n−1)
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+
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⎟⎟⎟⎟⎠
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⎝
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⎞
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⎛

⎝
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⎞

⎠.(11)

ThesourcefunctionsSnandTnrepresentthenonlinearmodecoupling,andarewrittenintermsofthelower-oder
perturbedquantities.Theexplicitformofthesefunctionsisderivedfromthebasicequations(6)and(7),andwewill
summarizebelowuptothethirdorder:

A.Sourcefunctions

Linearorder

S1(k;a)=0,

T1(k;a)=0(12)

Secondorder

S2(k1,k2;a)=−1
2

{
α(k1,k2)G1(k1)F1(k2)+α(k2,k1)G1(k2)F1(k1)

}
,

T2(k1,k2;a)=−1
2

β(k1,k2)G1(k1)G1(k2)(13)

Thesourcefunctionsgivenabovearesymmetricwithrespecttotheexchangeofarguments,i.e.,S2(k1,k2)=
S2(k2,k1),T2(k1,k2)=T2(k2,k1).Thus,numericallysolvingEq.(11),weobtainthesymmetrizedPTkernel
forF2andG2.

2Inthepresenceofeffectivestresstensor,thelate-timeevolutionmaynotnecessarilybedominatedbythegrowingmode,however,we
hereconsiderthecasethattheEFTofLSScorrectionsaresmall.
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Kernel reconstruction approach

1. Solve these equations with initial conditions at ai <<1:

2. Symmetrized :

F1 = ai, G1 = �ai ,   otherwise zero

F (sym)
n (k1, · · · ,kn) =

1
n!

�

{n}

{Fn(k1, · · · ,kn) + perm}

3.  Store the output in multi-dim arrays

For power spectrum at 1-loop order,

Recipes
Standard PT kernels as building blocks for various PT predictions

what we need is just the 3D arrays of kernels up to 3rd order 
(typical size ~100x100x10)

special technique is unnecessary

it can be parallelized

resmmed PT and/or RSD calculations
application tokernels up to 

3rd order



Application: f(R) gravity
All predictions are made from standard PT 
kernels up to 3rd order (i.e., F2, F3)

N-body data: Baojiu Li

k3/2 P (k)

f(R)GR

f(R) � �16� G �� + |fR,0| R2
0

R=
10 �

4
= 10�4

k3/2 P (k)
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FIG. 4: The measured constraints on fR0

, and their robustness to various tests, are presented. The measured likelihood function
appears in the top panels and the measured di↵erence of �2 is in the bottom panels. (Left panel) Results marginalizing over
the scale independent growth rate G

⇥

are shown by the black solid curve, while the constraints fixing G
⇥

= 0.46, given by
the Planck concordance ⇤CDM model, are blue dashed curves. The results for fR0

do not depend appreciably on the scale
independent behavior. (Right panel) The results also do not depend significantly on whether the initial power spectrum P (k)
used matches the Planck (black solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from
analyzing galaxy clustering from ⇤ CDM mock catalogues, verifying that |fR0

| ! 0 is recovered in this case.

The redshift-space two-dimensional correlation func-
tion ⇠(�,⇡) of the BOSS DR11 galaxies was computed
using the standard Landy-Szalay estimator [39]. In the
computation of this estimator we used a random point
catalogue that constitutes an unclustered but observa-
tionally representative sample of the BOSS CMASS sur-
vey and contains ⇠ 50 times as many randoms as we have
galaxies.

The covariance matrix was obtained from 600 mock
catalogues based on second-order Lagrangian perturba-
tion theory (2LPT) [40, 41]. The mocks reproduce
the same survey geometry and number density as the
CMASS galaxy sample. We obtain the covariance ma-
trix using the same treatment presented in our previous
works [10, 11].

We calculate the correlation function in 225 bins
spaced by 10h�1 Mpc in the range 0 < �,⇡ <
150h�1 Mpc. However, at small scales, if the non–
perturbative e↵ect of FoG is underestimated, then the
residual squeezing can be misinterpreted as a variation
in G

✓

or indeed f
R0

. We expect the FoG e↵ect to be in-
creasingly important at smaller scales, and so these mea-
surements may be at risk of misestimation. We therefore
impose a conservative cut on the measurements, exclud-
ing �

cut

< 40h�1 Mpc and s
cut

< 50h�1 Mpc [10]. In-
deed, [10] showed that cosmological parameter bias be-

gan to occur at smaller scales. This reduces the number
of measurement bins in � and ⇡ to N

bins

= 163.

B. Tests of theoretical templates

When the conservative cut–o↵ scales of �
cut

=
40h�1 Mpc and s

cut

= 50h�1 Mpc are used for the anal-
ysis, the e↵ective range of scale in Fourier space becomes
k < 0.1Mpc�1. The power spectra of ⇤CDM and f(R)
gravity models are presented in this range of scale in
Fig. 1. There are no observable deviations from ⇤CDM
for log |f

R0

| <⇠ �6. This implies that f(R) gravity models
with log |f

R0

| <⇠ �6 are e↵ectively equivalent to ⇤CDM
in this analysis. We take a uniform prior on log |f

R0

|
between �7 and �3.
We first test our pipeline of analysis by checking

whether it is possible to recover the ⇤CDM limit
log |f

R0

| <⇠ �6 using the mock catalogues based on
⇤CDM. We use the 611 CMASS mock catalogues to
measure central values of ⇠(�,⇡) and fit our theoretical
f(R) templates to the observed correlation function. The
measured likelifood function of log |f

R0

| is presented as
a blue dotted curve in the right panel of Fig. 4. The
best fit log f

R0

indeed lies within the ⇤CDM limit of
log |f

R0

| <⇠ �6. There are no mock galaxy catalogues
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the correlation function ⇠(�,⇡) using a ⇤CDM template
and replace the growth function D�

+

or growth rate D⇥

+

by that in f(R) gravity with |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0⇥ 10�4.
For the scale dependent growth function D�

+

, the vari-
ation of ⇠(�,⇡) with a small |f

R0

| = 3.2⇥ 10�5 is similar
to the case of a scale independent enhancement of the
growth function studied in [9]. Peak points on the BAO
ring represented by a thick black solid curve in Fig. 2
move coherently along the circle in an anti–clockwise di-
rection. The blue dashed contours in the left panel of
Fig.2 represent this variation. However, ⇠(�,⇡) with a
larger |f

R0

| = 3.0⇥ 10�4 varies di↵erently from the scale
independent case. Peak points on the BAO ring remain
the same, while minima of BAO are deepened, shown as
blue dotted contours in the same panel.

Next, we consider the variation of ⇠(�,⇡) due to the
scale dependent growth rate D✓

+

. In the case of the scale
independent growth rate, if G

⇥

increases or decreases,
the anisotropic e↵ects from higher order moments are
visible in the plot of ⇠(�,⇡) with the BAO peak points
moving clockwise or anti-clockwise along the circle de-
pending on the location of the peaks. The blue dashed
contours in the right panel of Fig. 2 represent the vari-
ation of ⇠(�,⇡) with �D⇥

+

for |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0 ⇥ 10�4. For |f
R0

| = 3.0 ⇥ 10�4, we can see
that the peak positions are ‘squeezed’ along the BAO
ring.

Having shown the individual e↵ects of a scale depen-
dent growth function and growth rate on the correlation
function, we now present the correlation function ⇠(�,⇡)
in f(R) gravity models. In Fig. 3, the correlation function
with |f

R0

| = 3.2⇥10�5 and |f
R0

| = 3.0⇥10�4 are plotted
as black dashed and black dotted contours, respectively.
There is no variation of ⇠(�,⇡) up to |f

R0

| <⇠ 10�6, and
the correlation function is e↵ectively equivalent to that
of ⇤CDM. When |f

R0

| increases to |f
R0

| ⇠ 10�4, we
observe the deviation of ⇠(�,⇡) from ⇤CDM and this de-
viation can be understood as the combined e↵ect of the
scale dependent growth function and growth rate shown
in Fig. 2.

III. METHODOLOGY AND RESULTS

The observed clustering of galaxies in redshift space
not only probes the density and velocity fields, i.e. the
growth and gravity as discussed in the previous section,
but also provides a useful tool to determine both the
transverse and radial distances by exploiting the Alcock–
Paczyński e↵ect and the BAO scale. In galaxy redshift
surveys, each galaxy is located by its angular coordinates
and redshift. However, the correlation function, ⇠(�,⇡),
is measured in comoving distances. Therefore a fiducial
cosmological model is required for conversion into comov-
ing space. We use the best fit ⇤CDM universe to Planck
2013 data. The conversion depends on the transverse
and radial distances involving D

A

and H�1. Instead of

FIG. 3: The best fit correlation function ⇠(�,⇡) of ⇤CDM
(black solid unfilled contours) and the correlation function of
f(R) gravity models with |fR0

| = 3.2 ⇥ 10�5 (black dashed
unfilled contours) and 3.0 ⇥ 10�4 (dotted unfilled contours).
The blue filled contours represent the measured ⇠(�,⇡) from
the DR11 CMASS data. The levels of contours are given
by (�0.001, 0.002, 0.005, 0.016, 0.05) from the outer to inner
contours.

recreating the measured correlation function in comoving
distances for each di↵erent model, we create the fiducial
maps from the theoretical correlation function by rescal-
ing the transverse and radial distances usingD

A

andH�1

and fit them to the observed correlation function. There-
fore, when we fit the measured ⇠(�,⇡), the two distance
parameters of (D

A

, H�1) are added to the structure for-
mation parameter set of {G

�

, G
⇥

,�
p

, |f
R0

|,�
p

} discussed
in Sec. II B.

A. Measured ⇠(�,⇡) using DR11

Our measurements are based on those previously pre-
sented in [11] which follows a similar procedure to [10].
Briefly, in our analysis we utilise data release DR11 of

the Baryon Oscillation Spectroscopic Survey [BOSS; 32–
34] which is part of the larger Sloan Digital Sky Survey
[SDSS; 35, 36] program. From DR11 we focus our anal-
ysis on the Constant Stellar Mass Sample (CMASS) [37],
which contains 690,826 galaxies and covers the redshift
range z = 0.43 � 0.7 over a sky area of ⇠8,500 square
degrees with an e↵ective volume of V

e↵

⇠ 6.0Gpc3. The
CMASS galaxy sample is composed primarily of bright,
central galaxies, resulting in a highly biased (b ⇠ 2) se-
lection of mass tracers [38].

ΛCDM
|fR,0| = 3.2� 10�5

|fR,0| = 3.0� 10�4

BOSS DR11 CMASS

arXiv:1507.01592Combining TNS model of RSD,
anisotropic correlation function is consistently computed 

in f(R) gravity → BOSS DR11 CMASS

Alcock-Paczynski effect marginalized

Likelihood

f(R) � �16� G �� + |fR,0| R2
0

R



Application: effective-field theory 
(EFT)

Power spectrum and kernel function in effective field theory of large-scale structure

Atsushi Taruya
(Dated: April 9, 2015)

Using a numerical scheme to compute the kernels of standard perturbation theory (PT), we
compute the kernel function of power spectrum in the context of effective field theory of large-scale
structure (EFTofLSS).

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

In the standard PT formalism, we normally adopt the single-stream approximation, under which the (CDM+baryon)
system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+ H v +

1
a
(v ·∇) · v = −1

a
∇ψ − 1

ρm

1
a
∇τij , (2)

1
a2

∇2ψ =
κ2

2
ρm δ (3)

(4)

with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])

τij = ρm

[(
c2
s δ −

c2
bv

aH
∇ · v

)
δij −

3
4

c2
sv

aH

{
∂jvi + ∂ivj −

2
3
(∇ · v)δij

}]
. (5)

The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have

H−1 ∂δ(k)
∂t

+ θ(k) = −
∫

d3k1d3k2

(2π)3
δD(k − k12)α(k1, k2) θ(k1)δ(k2), (6)

H−1 ∂θ(k)
∂t

+

{
2 +

Ḣ
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1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.
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FIG. 1: Standard PT predictions for the power spectra at one-loop order in real space. Adopting the cosmological parameters
determined by wmap5, the power spectra are computed, and results at z = 1 (top) and 0.35 (bottom) are plotted. The thin dotted
lines are the linear theory predictions, while the black solid lines are the normal standard PT results. For reference, we also
plot the prediction based on the RegPT treatment (magenta). On the other hand, red and blue curves are the results including
the EFTofLSS corrections (labeled as EFT), for which we specifically set the EFTofLSS coefficients to (c2

s , c
2
v) = (10−7c2, 0)

and (2 × 10−7c2, 0), respectively.

Fig. 1 shows the results of standard PT calculations. We here plot the cases at z = 1 (top) and z = 0.35 (bottom),
and the results are compared with N -body simulations (taken from Ref. [4]). The black solid lines represent the
normal case of standard PT calculations (i.e., c2

s = c2
v = 0), while the red and blue curves are the results with

EFTofLSS corrections (labeled as EFT). Here, we particularly choose c2
s = 10−7c2 (red), 2× 10−7c2 (blue), setting c2

v
to zero5. Note that as shown in Fig. 2, the dependence of the linear power spectrum on the coefficients c2

s and c2
v is

mostly degenerate. Thus, at the linear order, the role of the EFTofLSS corrections can be parameterized by the single
parameter, c2

s +fc2
v, with f being the linear growth rate (see also Ref. [3]). Since this degeneracy approximately holds

even at one-loop order, we shall set c2
v = 0 below. Fig. 1

Fig. 1 shows that the EFTofLSS corrections can reduce the power spectrum amplitude at high-k, and with an
appropriate choice of c2

s , the agreement between N -body simulation and PT calculation is improved. For reference,
we also plot the RegPT one-loop result (dashed magenta, with c2

s = c2
v = 0), however, a strong damping of the RegPT

power spectrum appears at relatively low-k, and thus the EFT predictions are superficially excellent (if we properly
choose the coefficients).

5 These coefficients may not be independent of time, because the EFTofLSS corrections are in general non-local. Here, just for simplicity,
we consider the time-independent coefficients, and study the role of EFTofLSS corrections.
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corrections are approximately 
described by single-parameter: 

At 1-loop order, 

Allowing cs to be free, EFT 1-loop 
reproduce N-body results well, but

c2
s + f (c2

bv + c2
sv)

k3/2 P (k)

Power spectrum and kernel function in effective field theory of large-scale structure

Atsushi Taruya
(Dated: April 9, 2015)

Using a numerical scheme to compute the kernels of standard perturbation theory (PT), we
compute the kernel function of power spectrum in the context of effective field theory of large-scale
structure (EFTofLSS).

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

In the standard PT formalism, we normally adopt the single-stream approximation, under which the (CDM+baryon)
system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then
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with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])
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The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have
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δD(k − k12)β(k1, k2) θ(k1)θ(k2), (7)

where we define c2
v = c2

bv + c2
sv

1. The functions α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.
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Application: effective-field theory

k=0.15 h/Mpc k=0.25 h/Mpc

At 1-loop,  PT predictions with EFT do not so much differ from 
the one w/o EFT,  which does not perfectly match simulations

K(k, q) = q
�Pnl(k)
�P0(q)

Nishimichi, Bernardeau & AT
arXiv:1411.2970

N-body data:
 Nishimichi

standard PT 1-loop
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w/o EFT corrections

Response 
function of P(k) �Pnl(k) =

�
d ln q K(k, q) �P0(q)

nonlinear linear (initial)



Application: effective-field theory

Simply adding standard PT 2-loop w/o EFT apparently looks better
(although it starts to fail at k>0.4 h/Mpc)

Standard PT 2-
loop w/o EFT

k=0.25 h/Mpc

k>0,  k<0

k>0,  k<0

Standard PT 2-
loop w/o EFTk=0.15 h/Mpc

N-body data: Nishimichi

Response 
function of P(k) �Pnl(k) =

�
d ln q K(k, q) �P0(q)

nonlinear linear (initial)
Nishimichi, Bernardeau & AT

arXiv:1411.2970



Summary
A numerical method for PT calculation of LSS, even applicable 

to analytically intractable models of structure formation

Solving numerically the evolution eps. for PT kernels 
up to 3rd order (F2, F3, G2, G3)

(resummed) power spectrum in real & redshift spaces

✓ f(R) gravity : consistent modified gravity analysis using BOSS DR 11

|fR,0| < 8� 10�4 (2�)✓ Effective-field theory :

Application

full-numerical treatment of power spectrum & response 
function at 1-loop order

Calculation should be accelerated with parallel computation, 
and it can be applied to a practical parameter estimation study


