20-24 July, 2015
MPA/ESO/MPE/Excellence Cluster Universe Joint Conference
@ Garching

A novel scheme for

 perturbation theory calculation of large-scale structure
Atsushi Taruya (YITP, Kyoto Univ.)

With F.Bernardeau, K.Koyama, E.Linder, T.Nishimichi, T.Okumura, C.Sabiu, Y-S.Song, G.Zhao

Perturbation theory calculations of large-scale structure

Precision theoretical calculations for large-scale structure : essential ingredient to pursue precision cosmology

Reducing and/or controlling nonlinear systematics

(gravity/redshift-space distortions/galaxy biasing)

Perturbation theory (PT) approach

- valid at large scales in weakly nonlinear regime
- tell us how nonlinear systematics are developed through the coupling between different Fourier modes

PT kernels

Standard PT kernels

Basic eqs.

 single-stream approx.$$
\begin{aligned}
& \frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot[(1+\delta) \boldsymbol{v}]=0 \\
& \frac{\partial \boldsymbol{v}}{\partial t}+H \boldsymbol{v}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \cdot \boldsymbol{v}=-\frac{1}{a} \nabla \psi \\
& \frac{1}{a} \nabla^{2} \psi=\frac{\kappa^{2}}{2} \rho_{\mathrm{m}} \delta
\end{aligned}
$$

Bernardeau et al. ('02)
Assuming $|\delta|,|\theta| \ll 1$
we expand $\delta=\delta^{(1)}+\delta^{(2)}+\cdots$ and $\theta=\theta^{(1)}+\theta^{(2)}+\cdots$

$$
\theta \equiv \frac{\nabla \cdot \boldsymbol{v}}{a H}
$$

$$
\begin{aligned}
& \delta^{(n)}(\boldsymbol{k} ; t)=\int \frac{d^{3} \boldsymbol{k}_{1} \cdots d^{3} \boldsymbol{k}_{n}}{(2 \pi)^{3(n-1)}} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}_{12 \cdots n}\right) F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; t\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta_{0}\left(\boldsymbol{k}_{n}\right), \\
& \theta^{(n)}(\boldsymbol{k} ; t)=\int \frac{d^{3} \boldsymbol{k}_{1} \cdots d^{3} \boldsymbol{k}_{n}}{(2 \pi)^{3(n-1)}} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}_{12 \cdots n}\right) G_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; t\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta_{0}\left(\boldsymbol{k}_{n}\right),
\end{aligned}
$$

Kernels (Fn, Gn) are analytically constructed from recursion relation (e.g., Goroff et al. '86)

We can do many things with standard PT kernels !!

- standard PT calculations
- resummed PT scheme by Г-expansion (RegPT, MPTbreeze) (Bernardeau et al. '08; AT, et al.' 12 ; Crocce et al. ' 12)
- modeling redshift-space distortions (RSD)
(e.g., AT, Nishimichi \& Saito 'IO; Reid \& White 'II;Vlah et al.' $12 ; \ldots$)
- modeling galaxy bias (e.g., McDonald '06; McDonald \& Roy '08; Saito et al. '। 14)

However,

Calculations relies on the analytic expressions for kernels
A slight change in basic eqs. makes calculation intractable $($ e.g., modified gravity, massive neutrinos, \ldots) \longrightarrow numerical treatment

Previous works

Time-RG Pietroni ('08); Lesgourgues et al. ('09)

$\sqrt{ }$ Application to massive neutrinos \& redshift-space distortions \checkmark Public codes (Copter, CLASS, redTime)

Carlson et al. ('09); Audren \& Lesgourgues ('II); Upadhye et al. ('I4,'I5)
Numerical scheme to solve Closure eqs.

Valageas ('07);
Hiramatsu \& AT ('09)
\checkmark Application to modified gravity models
Koyama, AT \& Hiramatsu ('09); Brax \& Valageas (' 12, ' 13, ' 14); AT et al. (' $13, ' \mid 4$)
In this talk,
As yet another approach, I develop a simple numerical method to reconstruct standard PT kernels (Fn, Gn)

Kernel reconstruction approach

 Standard PT kernels as building blocks for various PT predictions Solving evolution eqs. for PT kernels numerically:$$
\hat{\mathcal{L}}\left(k_{1} \cdots n\right)\binom{F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; a\right)}{G_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; a\right)}=\binom{S_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; a\right)}{T_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; a\right)} \text { nonlinear } \text { source term }
$$

$$
\sum_{j=1}^{n-1}\binom{-\alpha\left(\boldsymbol{k}_{1 \cdots j}, \boldsymbol{k}_{j+1 \cdots n}\right) G_{j}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{j}\right) F_{n-j}\left(\boldsymbol{k}_{j+1}, \cdots, \boldsymbol{k}_{n}\right)}{-\frac{1}{2} \beta\left(\boldsymbol{k}_{1 \cdots j}, \boldsymbol{k}_{j+1 \cdots n}\right) G_{j}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{j}\right) G_{n-j}\left(\boldsymbol{k}_{j+1}, \cdots, \boldsymbol{k}_{n}\right)} \boldsymbol{+}
$$

modification is easy
scale factor as time variable

Kernel reconstruction approach

Standard PT kernels as building blocks for various PT predictions

Recipes

I. Solve these equations with initial conditions at $a_{i} \ll 1$:

$$
F_{1}=a_{i}, \quad G_{1}=-a_{i}, \quad \text { otherwise zero }
$$

2. Symmetrized : $F_{n}^{(\text {sym) })}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)=\frac{1}{n!} \sum_{\{n\}}\left\{F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)+\right.$ perm $\}$
3. Store the output in multi-dim arrays

For power spectrum at I-loop order,
special technique is unnecessary it can be parallelized
what we need is just the 3D arrays of kernels up to 3rd order (typical size $\sim 100 \times 100 \times 10$)
kernels up to application to resmmed PT and/or RSD calculations

Application: $f(R)$ gravity

All predictions are made from standard PT

 kernels up to 3rd order (i.e., F2, F3)N-body data: Baojiu Li

Consistent modified gravity analysis

Y-S.Song, AT, Linder, Koyama et al. arXiv:I507.01592
Combining TNS model of RSD, anisotropic correlation function is consistently computed in $f(R)$ gravity \rightarrow BOSS DRII CMASS

$$
f(R) \simeq-16 \pi G \rho_{\Lambda}+\left|f_{R, 0}\right| \frac{R_{0}^{2}}{R}
$$

Alcock-Paczynski effect marginalized

Application: effective-field theory

$$
\begin{aligned}
& \frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot[(1+\delta) \boldsymbol{v}]=0 \\
& \frac{\partial \boldsymbol{v}}{\partial t}+H \boldsymbol{v}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \cdot \boldsymbol{v}=-\frac{1}{a} \nabla \psi-\frac{1}{\rho_{\mathrm{m}}} \frac{1}{a} \nabla \tau_{i j}
\end{aligned}
$$

Baumann et al. ('I2), Carrasco, Herzberg \& Senatore ('I2), Carrasco et al. ('I3ab), Porto, Senatore \& Zaldarriaga (' 14), ...

> e.g., Herzberg ('I4)

$$
\tau_{i j}=\rho_{\mathrm{m}}\left[\left(c_{\mathrm{s}}^{2} \delta-\frac{c_{\mathrm{bv}}^{2}}{a H} \nabla \cdot \boldsymbol{v}\right) \delta_{i j}-\frac{3}{4} \frac{c_{\mathrm{sv}}^{2}}{a H}\left\{\partial_{j} v_{i}+\partial_{i} v_{j}-\frac{2}{3}(\nabla \cdot \boldsymbol{v}) \delta_{i j}\right\}\right]
$$

At I-loop order,
corrections are approximately described by single-parameter:

$$
c_{\mathrm{s}}^{2}+f\left(c_{\mathrm{bv}}^{2}+c_{\mathrm{sv}}^{2}\right)
$$

Allowing cs to be free, EFT I-loop reproduce N-body results well, but

Application: effective-field theory

nonlinear
Response function of $P(k)$

$$
\delta P_{\mathrm{nl}}(k)=\int d \ln q K(k, q) \delta P_{0}(q)
$$

Nishimichi, Bernardeau \& AT arXiv:|4 | |. 2970

At I-loop, PT predictions with EFT do not so much differ from the one w/o EFT, which does not perfectly match simulations

Application: effective-field theory

nonlinear

Response function of $P(k)$

$$
\delta P_{\mathrm{nl}}(k)=\int d \ln q K(k, q) \delta P_{0}(q)
$$

Nishimichi, Bernardeau \& AT arXiv:| 4 | |. 2970

Simply adding standard PT 2-loop w/o EFT apparently looks better (although it starts to fail at k>0.4 h/Mpc)

Summary

A numerical method for PT calculation of LSS, even applicable to analytically intractable models of structure formation

Solving numerically the evolution eps. for PT kernels
up to 3rd order (F2, F3, G2, G3)
\longrightarrow (resummed) power spectrum in real \& redshift spaces Application
$\checkmark f(R)$ gravity : consistent modified gravity analysis using BOSS DR II
\checkmark Effective-field theory : $\left|f_{R, 0}\right|<8 \times 10^{-4}(2 \sigma)$ full-numerical treatment of power spectrum \& response function at I-loop order
Calculation should be accelerated with parallel computation, and it can be applied to a practical parameter estimation study

