Redshift-Space Distortions of the Galaxy Distribution

0

Alex Szalay, JHU

Redshift Space Distortions

Three different distortions

- Linear infall (large scales)
 - Flattening of the correlations (Kaiser 86)
- Thermal motion (small scales)
 - 'Fingers of God'
 - Cuspy exponential (Davis&Peebles) $P(v_{12}) \propto e^{-|v_{12}|/\sigma}$
- Nonlinear infall (intermediate scales)
 - Caustics

Finding the BAO in SDSS DR4

• Eisenstein et al (2005) – LRG sample

Correlation function

Redshift Space Correlations

- Azimuthal average wipes out the P_2 and P_4 terms, only the real space correlation function remains
- β terms contain a second derivative (Hamilton '92) $\frac{2\beta}{3} [j_0(kr) - 2j_2(kr)] = -2\beta [j_0''(kr)]$
- Interesting effect on power spectra with sharp features: redshift-space distortions make features even sharper!
- Baryon Acoustic Oscillations !!!

$\xi(r)$ from linear theory + BAO

Mixing of ξ₀ ξ₂ and ξ₄
Along the line of sight

$$\xi_n(r) = \frac{1}{2\pi^2} \int_0^\infty dk \ k^2 j_n(kr) P(k)$$

$$\xi^{(s)}(r) = \left(1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right)\xi_0(r) - \left(\frac{4\beta}{3} + \frac{4\beta^2}{7}\right)\xi_2(r) + \frac{8\beta^2}{35}\xi_4(r)$$

Shift of the BAO Scale with μ ?

Position of the BAO peak is sensitive to how we measure it (Jeong, Dai, Kamionkowski, Szalay 2015)

Analyzing the Main SDSS Sample

- SDSS DR7 MGS, Stripes 9 through 37, Northern Cap only
- 0.1<z<0.18, zConf>0.9, zErr<0.1</p>
- Remove all objects in the incomplete areas
- 300K objects
- 17M random galaxies
- Slices:

From 0 to 165°, 15° increments, 12 angular orientations, 2.5° thickness, 20°<width<80°, 661 slices total

Tian, Neyrinck, Budavari, Szalay (2011)

300-750 Mpc/h only, LOS

Wavelet Transform

- Mexican hat wavelet transform
 - Compensated filter
 - Enhances localized "bump"
- Zero signal for constant background
- Decreases correlations among bins

S/N of the Wavelet Transform

Flat theta weighting

Noise estimated from slices, corrected for correlations

Far Side Infall (140Mpc)

- Center: I 40 h^{-1} Mpc, width: 25 h^{-1} Mpc
- Still shows some skewness

Strong Non-Linear Infall (55Mpc)

Distribution of LOS Mexican Hat wavelet coefficients over the 660 slices,

• Center at 55 h^{-1} Mpc, width 25 h^{-1} Mpc

Pairwise Velocity Distribution

Pairwise Velocity Moments

- Longitudinal 2nd moment 25% more elongated than transverse
- Infall has a maximum at around 4Mpc/h

Using the Indra simulations (see B. Falck's talk)

From the Indra simulations

Nuala McCullagh (2015)

Real space

Line of sight

Conclusion

- Redshift space distortions amplify and sharpen BAO features along the line of sight
- Near and far side infall onto the BAO bump
- Angular averaging wipes out most of this effect
- Evidence for BAO in SDSS DR7 MGS at ~110 h⁻¹Mpc, potentially constraining the equation of state at low z
- Trough at 55 h⁻¹Mpc indicates effects of strong nonlinear infall on these scales
- Nonlinearities important even on BAO scales!
- Fingers of God are quite anisotropic