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Baryon Oscillation Spectroscopic
Survey (BOSS)
I BOSS is was one of 4 experiments

making up SDSS3.

I Uses 2.5m SDSS telescope

I Large etendue
I Measuring:

I mid resolution (R ∼2000) spectra
I UV (∼3600Å)- mid IR (∼ 10,000Å)
I 1000 spectra simultaneously

I Got spectra of
I 1.5 million LRG (z < 0.7)
I 160,000 QSOs with usable forest

I Survey completed June 2014

I Primary science goal is to measure dark
energy through Baryonic Acoustic
Oscillations.



BOSS maps



Lyman-α forest

Neutral hydrogen absorbs light from distant quasars blue-ward of
Lyman-α emission.



Lyman-α forest

Neutral hydrogen absorbs light from distant quasars blue-ward of
Lyman-α emission.



BOSS spectra



3D sampling of the universe



From baryons to flux
Absorption done by neutral hydrogen in photo-ionization
equilibrium:

ΓnHI = α(T )npne (1)

nHI =
α(T )ρ2

b

Γ
� 1 (2)

and so the absorbed flux fraction is given by

f = exp (−τ) ∼ exp
(
−A(1 + δb)1.7

)
(3)

I We are observing a very non-linear transformation of the
underlying density field.

I On large scales, Lyman-α forest is simply a biased
tracer.

I On small scales, physics can be understood from first
principles.



Data Releases

I DR 12: 2.3 million galaxies, 300k QSOs

I DR 11 (internal release): 90% of DR12

I DR10 : 75% DR12

I DR9 : 60% DR12

Bottom line: majority of papers published with DR11 datasets – no
real statistical gain in DR12, but can improve systematics



BOSS spectra



BOSS results: DR11 galaxy BAO

I Percent level distance to z = 0.57
I This is plot for isotropic measurements – CMASS results are anisotropic



Lyman-α forest BAO

from de Lubac et al, 2014
Measurements of BAO at z = 2.4



δFδQ cross-correlation in BOSS

I Detection of the BAO in the cross-correlation between QSO and forest by
Andreu Font & co.

I Ability for BOSS to do this has not been predicted, but constraining power
nearly as powerful as with flux auto-correlation



World BAO data
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I Collection of world BAO data
I Lines are Planck best fit predictions



Cosmology constraints

I The minimal ΛCDM model fits great (even by eye).

I The high-z points are at 2.5 σ, but overall χ2 is fine
I What is the story with relaxing other parameters?

I As you relax the model, Ωk and w0 (at pivot) remain well
constrained (O(10−1))

I w1 is O(1) unconstrained



DE models:
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DE models:
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DE models:
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DE models:
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DE models:
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DE models:
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Distance Ladder

I Distance ladder starts with local measurements of
the distance at kpc distances (RR Lyrae,
Cepheids, etc.) to calibrate higher distance rulers.

I Once distance to object safely in the hubble flow
is determined, we can measure Hubble parameter.



Inverse Distance Ladder
I In inverse distance ladder measurements we start

with high-z measurements of the Hubble
parameter from BAO and bring them down using
SN data.

I This is done in a way that marginalizes over all
possible smooth expansion histories.



Inverse distance ladder

I Inverse distance ladder transfer H0 measurement from redshift
of observation to z = 0 using Supernovae Type Ia



Inverse distance ladder
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I BOSS prefers low-h Universe: H = 68.1 ± 1.2



Neutrino mass

I Ratio of numbers of neutrino/photon is determined by
thermodynamics in the early universe

I Light neutrinos become non-relativistic at redshift

z ∼ 2000
mν

1eV

I There are subtle expansion history effects:
I Distance to the last scattering surface is affected by mν

I CMB determination of Ωm does not include neutrinos, while
BAOs do.

I Our compressed limit is
∑

mν < 0.56eV at 95% c.l. from
expansion history alone!

I Including the effects on growth of perturbations tightens the
bound to < 0.22eV



Neutrino mass from geometry:
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Side rants on
∑

mν
First:

I At the edge of detection, experiments with downward noise
fluctuations will claim upper limits and those with upward
noise fluctuations detections.

I E.g. say true value
∑

mν = 0.15eV.
I This completely consistent with

∑
mν < 0.2eV at 95 c.l AND∑

mν = 0.33 ± 0.1eV

Second:
I Standard lore says that LSS measures neutrino mass by

measuring scale-dependent suppression in the matter power
spectrum as traced by galaxies

I However, Font-Ribera et all show that for e.g. Planck+DESI
give σ

∑
mν = 0.021eV, dropping to σ

∑
mν = 0.1eV when

marginalizing over Linder’s γ parameter (c.f. drop to
σ
∑

mν = 0.038eV when marginalising over DETF model)
I Evidence that RSD play a major role through f σ8, but more

work needs to be done



Updates to Lyman-α forest
Using existing pipeline with improvements to systematics:

I A completely different pipeline based on power-spectrum
measurement in the works



New power-spectrum code
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I Completely new code, developed by Pat McDonald, Andreu Font Ribera and
myself

I Took three years, but things coming together

I Power-spectrum measurement

I Basis for all experiments and majority of analysis



Future

I eBOSS: covering
the full redshift
range to z = 2
using ELG, QSOs
as tracers, more
Lyα forest

I DESI: 35 million
redshifts at z < 1.5

I Euclid: 50 million
redshifts at z > 1


