
Redshift-Space Distortions
and BOSS

Roman Scoccimarro (NYU)

Wednesday, July 22, 2015



Redshift-Space Distortions
and BOSS

Roman Scoccimarro (NYU)

WARNING!!!
No senior LSS-person has suggested any of my slides!

Wednesday, July 22, 2015



RSD is (the toughest) one 
of the big three challenges in Large-Scale Structure

1) Nonlinear evolution of matter fluctuations

2) The relationship between galaxy and matter fluctuations (bias)

3) The mapping from redshifts to distances (redshift-space distortions)
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Relationship between real and redshift-space clustering:

Everything is encoded in the pairwise velocities PDF.
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R.S. (2004)

Wednesday, July 22, 2015



scale, both formulations are equivalent, when there is
scale dependence (as expected in any realistic scenario)
the first term in the integral for P does not give unity, thus
one should use Eq. (12) instead. In fact, this contribution
to !s has a simple physical interpretation: it corresponds
to redshift-space density fluctuations generated by veloc-
ity fluctuations in a uniform (real-space) density, i.e.,
when ! ! 0. If P did not depend on scale, random pairs
are mapped into random pairs, scale dependence means
that redshift-space correlations are created by taking
random pairs in real-space and mapping them to
redshift-space differently at different scales.

The streaming model has been mostly used at small
nonlinear scales by assuming P to be an exponential with
zero streaming velocity and a scale-independent isotropic
velocity dispersion [37]. At large scales, [21] showed that
if one assumes the streaming model in phase space (with
density and velocity fields coupled as in linear dynamics),
it is possible to recover the Kaiser limit for the correlation
function.We will stress in Sec. IV, however, that the large-
scale limit uses an additional assumption—that sk be
much larger than the pairwise velocity dispersion.
Fisher [21] also claims that in the linear regime the
relationship between !s and ! can be reduced to the
standard streaming model, i.e., as in Eq. (12) with
1" !’s replaced by !’s [see his Eq. (26)]. This is incorrect;
it suffices to say that if this were true all terms in !s
would be proportional to !, in particular, such a result
does not admit redshift distortions generated by corre-
lated velocity fluctuations (where P depends on r) in an
unclustered distribution (! ! 0).

The power spectrum and two-point correlation func-
tion in redshift-space can be written in a similar form

Ps#k$ !
Z d3r

#2"$3 e
%ik&r'Z##; r$ % 1(; (13)

!s#sk; s?$ !
Z drkd$

2"
e%i$#rk%sk$'Z##; r$ % 1(; (14)

where # ! ifkz; if$ respectively and

Z ##; r$ ) '1" !#r$(M##; r$: (15)

It is important to note that the two-point correlation
function is affected by redshift distortions for all con-
figurations, even those perpendicular to the line of sight,
since they are coming from different scales through the
dependence of P on rk. It is, however, possible to project
out redshift distortions by integrating along the line of
sight

!p#r?$ )
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d3k; (16)

which sets $ ! 0 in Eq. (14). This is only true in the
plane-parallel approximation where the concept of ‘‘line
of sight’’ is applicable. On the other hand, the
redshift-space power spectrum has the nice property, in
the plane-parallel approximation, that transverse modes
are unaffected by redshift distortions (a wave in
the k? direction is uniform in z and thus unperturbed
by the real-to-redshift-space mapping), therefore
Ps#kz ! 0; k?$ ! P#k?$.

Figure 1 shows the pairwise velocity distribution P for
pairs separated by distance r along the line of sight,
measured from the very large simulation of the Virgo
consortium [38]. This has 5123 dark matter particles in
a 479 Mpc=h box with a linear power spectrum corre-
sponding to !m ! 0:3 (including !b ! 0:04 in baryons),
!" ! 0:7, h ! 0:7, and %8 ! 0:9. Because of the large
number of pairs (in our measurements we use 32* 1012

total pairs at scales between 0.1 and 300 Mpc=h) and

FIG. 1 (color online). The parallel to the line of sight pair-
wise velocity PDF at redshift z ! 0 for pairs separated by
distance r, measured in the N-body simulations. In the bottom
left panel, the discontinuous at the origin PDF (thin solid line)
corresponds to that given by the dispersion model, Eq. (19)
(ignoring the delta function at the origin). In the bottom right
panel, the narrow distribution (thin solid line) corresponds to
the prediction of linear dynamics, Eq. (44).

ROMÁN SCOCCIMARRO PHYSICAL REVIEW D 70 083007
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Challenge: the pairwise PDF is highly non-Gaussian even at large scales.

Juszkiewicz et al (1998), 
R.S.(2004), 

Bianchi et al (2014)
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pairwise cumulants from N-body simulations

linear theory

R.S. (2004)
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Main features of pairwise PDF

- Gaussian core
- Exponential wings (large kurtosis)
- skewness 

would be good to have working models with a few 
parameters that incorporate all these main 
characteristics.
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δD(k) + Ps(k) =

∫
d3r

(2π)3
e−ik·r

〈
eifkz∆uz

[1 + δ(x)][1 + δ(x′)]
〉
, (5)

where ∆uz ≡ uz(x) − uz(x′) and r ≡ x − x′. In
configuration space we have

1 + ξs(s‖, s⊥) =

∫
dr‖

〈
δD(s‖ − r‖ + f∆uz)

[1 + δ(x)] [1 + δ(x′)]
〉
, (6)

where the constraint given by the delta function
takes a pair separated by line-of-sight distance r‖ =
(x − x′) · ẑ in real space to s‖ in redshift-space as
given by Eq. (2), with perpendicular separations un-
changed, s⊥ = r⊥. Direct Fourier transformation of
this equation yields Eq. (5) for the power spectrum.
We can write Eq. (6) in a form closer to that of the
power spectrum by rewriting the delta function,

1 + ξs(s‖, s⊥) =

∫
dr‖dγ

2π
e−iγ(r‖−s‖)

〈
eifγ∆uz

[1 + δ(x)] [1 + δ(x′)]
〉
, (7)

It is clear from Eqs. (5) and (7) that the basic
object of interest is the line-of-sight pairwise velocity
generating function, M(λ, r),

[1 + ξ(r)] M(λ, r) ≡
〈
eλ∆uz [1 + δ(x)] [1 + δ(x′)]

〉
,

(8)
where we are interested in λ = ifkz in Fourier space,
or λ = ifγ in configuration space. This generating
function can be used to obtain the line-of-sight pair-
wise velocity moments, e.g.

v12(r) ≡
(∂M

∂λ

)

λ=0
(9)

σ2
12(r) ≡

(∂2M
∂λ2

)

λ=0
, (10)

give the mean and dispersion of the line-of-sight pair-
wise velocities [64]. The pairwise velocity probabil-
ity distribution function (PDF), P(v), is obtained

from the moment generating function by inverse
Fourier transform [65],

P(v, r) =

∫ ∞

−∞

dγ

2π
e−iγv M(iγf, r). (11)

Notice that P(v) depends on scale through the scale-
dependence of M, and indeed

∫
dvP(v) v = fv12(r),∫

dvP(v) v2 = f2σ2
12(r), etc. From Eq. (7) and (11)

the redshift-space two-point correlation function can
then be written as

1 + ξs(s‖, s⊥) =

∫ ∞

−∞
dr‖ [1 + ξ(r)] P(r‖ − s‖, r),

(12)
where r2 ≡ r2

‖ + r2
⊥ and s⊥ = r⊥. The physical

interpretation of this formula is clear: P maps the
pairs at separation r‖ to separation s‖ due to rela-
tive velocity −H(r‖−s‖) [see Eq. (2)] with probabil-
ity P(r‖ − s‖, r). This type of relationship between
the real and redshift space correlation functions is
known as the streaming model [2], though it is com-
monly written in terms of ξ rather than 1 + ξ. If
P did not depend on scale, both formulations are
equivalent, when there is scale dependence (as ex-
pected in any realistic scenario), the first term in the
integral for P does not give unity, thus one should
use Eq. (12) instead. In fact, this contribution to ξs

has a simple physical interpretation: it corresponds
to redshift-space density fluctuations generated by
velocity fluctuations in a uniform (real-space) den-
sity, i.e. when ξ = 0. If P did not depend on scale,
random pairs are mapped into random pairs, scale
dependence means that redshift-space correlations
are created by taking random pairs in real space
and mapping them to redshift space differently at
different scales.

The streaming model has been mostly used at
small non-linear scales by assuming P to be an ex-
ponential with zero streaming velocity and a scale-
independent isotropic velocity dispersion [33]. At
large scales, [20] showed that if one assumes the
streaming model in phase space (with density and
velocity fields coupled as in linear dynamics), it is
possible to recover the Kaiser limit for the corre-
lation function. We will stress in section IV, how-
ever, that the large-scale limit uses an additional as-
sumption, that s‖ be much larger than the pairwise
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velocity dispersion. Fisher [20] also claims that in
the linear regime the relationship between ξs and ξ
can be reduced to the standard streaming model,
i.e. as in Eq. (12) with 1 + ξ’s replaced by ξ’s [see
his Eq. (26)]. This is incorrect, it suffices to see
that if this were true all terms in ξs would be pro-
portional to ξ, in particular, such a result does not
admit redshift distortions generated by correlated
velocity fluctuations (where P depends on r) in an
unclustered distribution (ξ = 0).

The power spectrum and two-point correlation
function in redshift space can be written in a similar
form,

Ps(k) =

∫
d3r

(2π)3
e−ik·r

[
Z(λ, r) − 1

]
, (13)

ξs(s‖, s⊥) =

∫
dr‖dγ

2π
e−iγ(r‖−s‖)

[
Z(λ, r) − 1

]
,

(14)

where λ = ifkz, ifγ respectively and

Z(λ, r) ≡ [1 + ξ(r)] M(λ, r). (15)

It is important to note that the two-point corre-
lation function is affected by redshift distortions for
all configurations, even those perpendicular to the
line of sight, since they are coming from different
scales through the dependence of P on r‖. It is how-
ever possible to project out redshift distortions by
integrating along the line of sight,

ξp(r⊥) ≡
2

r⊥

∫ ∞

0
ds‖ ξs(s‖, r⊥)

=
2

r⊥

∫ ∞

0
dr‖ ξ(

√
r2
‖ + r2

⊥)

= π

∫
P (k)

J0(kr⊥)

kr⊥
d3k, (16)

which sets γ = 0 in Eq. (14). This is only true in
the plane-parallel approximation, where the concept
of “line of sight” is applicable. On the other hand,
the redshift-space power spectrum has the nice prop-
erty, in the plane-parallel approximation, that trans-
verse modes are unaffected by redshift distortions (a
wave in the k⊥ direction is uniform in z and thus

FIG. 1: The parallel to the line of sight pairwise velocity
PDF at redshift z = 0 for pairs separated by distance r,
measured in the N-body simulations. In the bottom left
panel, the discontinuous at the origin PDF (thin solid
line) corresponds to that given by the dispersion model,
Eq. (19) (ignoring the delta function at the origin). In
the bottom right panel, the narrow distribution (thin
solid line) corresponds to the prediction of linear dy-
namics, Eq. (44).

unperturbed by the real-to-redshift space mapping),
therefore Ps(kz = 0, k⊥) = P (k⊥).

Figure 1 shows the pairwise velocity distribution
P for pairs separated by distance r along the line
of sight, measured from the VLS simulation of the
Virgo consortium [34]. This has 5123 dark mat-
ter particles in a 479 Mpc h−1 box with a linear
power spectrum corresponding to Ωm = 0.3 (includ-
ing Ωb = 0.04 in baryons), ΩΛ = 0.7, h = 0.7 and
σ8 = 0.9. Due to the large number of pairs (in
our measurements we use 32 × 1012 total pairs at
scales between 0.1 and 300 Mpc h−1) and volume of
the simulation, the statistical uncertainties are small
enough that we do not plot error bars for clarity. On
the other hand, one must keep in mind that neigh-
boring points, separated by only 20 km/s, must be

5

λ

which can be written (SD “scale-dep”, i.e. diff from infinity)

P (k) = W∞(λ) PδZ(k) + P SD
W (k) +

�
d3q PδZ(q) P SD

W (k− q),

to leading order in PT ,

PδZ(k) ≈ Pδδ(k) + 2fµ2Pδθ(k), PW (k) ≈ f2µ4Pθθ(k),

parameters: small-scale vel disp, kurtosis of the PDF. 

(Ariel’s plots on Monday correspond to ignoring convolution)
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Modelling BAO and RSD

z = 0

z = 0.57

DM
Linear theory
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Nonlinear 
evolution
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X
i
!D!m"mi#!D!xi " x0# ’ n!m#$1% b1!m#!L!x0#&;

(53)

which implies, after straightforward algebra, that in the
halo model,

G!!k# '
D%
!"

Z
mdmn!m#b1!m#um!k# ' D%b1!k#; (54)

in other words, propagator renormalization in RPT exactly
corresponds to the standard (scale-dependent) bias in the
framework of the halo model, making the analogy between
the 2-halo term and the first term in Eq. (48) exact. In
practice the suppression from the propagator in RPT is
stronger than that in the halo model [due to the halo profile
in Eq. (54)], however this is a simplification of Eq. (53)
where nonlinear halo bias and exclusion effects are
ignored.

Regarding the 1-halo term, it is difficult to connect it
formally to the mode-coupling kernel " in Eq. (48) be-
cause there is no perturbative description of such a term
and " does not appear to have a simple expression apart
from obeying Eq. (48). However, physically, the relation-
ship is obvious: the second term in Eq. (48) describes
mode-mode coupling and so does the 1-halo term (given
the usual assumptions where the 2-halo term is propor-
tional to the linear spectrum). In this sense the correspon-
dence between the description of the power spectrum in
RPT and the halo model is exact, although the ingredients
are very different.

VI. CONCLUSIONS

We developed a new way of looking at cosmological
perturbation theory, which makes possible a well-
controlled description of gravitational clustering at non-
linear scales. This formalism follows the growth of struc-
ture as it develops in time, decomposed into linear
propagation plus interactions, summing over all possibil-
ities. Although at first sight such time-decomposition
seems more complicated than in standard perturbation
theory (where time evolution is already integrated out up
to the present time), we showed that one can take advan-
tage of this extra information by finding (based on topo-
logical considerations) infinite subset of diagrams that can
be resummed and identified with physical quantities.

The most important aspect of this resummed theory,
which we call renormalized perturbation theory (RPT), is
that the nonlinear (renormalized) propagator (which enters
as a key ingredient in the calculation of correlation func-

tions) is a strong function of scale, decaying nearly ex-
ponentially at nonlinear scales, see [21] for measurements
in numerical simulations. When the perturbative expansion
of the nonlinear power spectrum is divided into terms that
sum up to the renormalized propagator plus terms that
describe mode-mode coupling, the resulting (renormal-
ized) perturbation theory is well behaved in the sense
that each term dominates in a narrow range of scales and
is suppressed otherwise. We also showed that this descrip-
tion turns out to be analogous to that in the halo model.

Future work is needed to decide whether this approach
will be fruitful in quantitative terms;, for example, by
comparing predictions for the nonlinear power spectrum
against N-body simulations. In a companion paper [21] we
present a detailed analysis of the resummation of the
propagator and comparison of it against numerical simu-
lations. The calculation of the nonlinear power spectrum in
RPT requires the inclusion of many terms (loops) in the
mode-coupling series to cover an interesting range of
scales, which at present appears as a nontrivial task.
However, there are symmetries (e.g. Galilean invariance,
see [10]) that connect the resummation of the mode-
coupling series with that of the propagator, which one
might be able to take advantage of. This issue deserves
further work and will be discussed elsewhere [24].

Finally, one might wonder whether the single-stream
approximation made so far in our formalism will break
down before one can get any interesting results into the
nonlinear regime.1 Although this is a possibility, an edu-
cated guess is that such effects do not show up until scales
well in the nonlinear regime, if one uses as a proxy for
when multistreaming becomes important the scale at which
the power in the vorticity of the velocity field equals that in
the divergence [6]. This happens (not surprisingly, since
vorticity should slow down the growth of power) at roughly
the same scale of the ‘‘virial turnover’’ of the nonlinear
power spectrum, i.e. k ’ 1h Mpc"1 for CDM models at
z ' 0. Having a robust prediction of the nonlinear power
spectrum as a function of cosmological parameters up to
such scales would be very useful for applications in many
aspects of large-scale structure, e.g. weak gravitational
lensing surveys.
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1Extension of our approach to the Vlasov equation is certainly
possible, see [20] for application of path-integral methods to the
Vlasov-Poisson system.

RENORMALIZED COSMOLOGICAL PERTURBATION THEORY PHYSICAL REVIEW D 73, 063519 (2006)

063519-13

Small-scale suppression is fairly simple to fix, as pointed out already in first RPT 
paper (2005):
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conservation,

@ui
@!

þHui þ ðu # rÞui ¼ &r"& 1

#
rjð#$ijÞ; (19)

where # ' 1þ %, while the evolution of the velocity
dispersion tensor is obtained from Eq. (17) by applying
second derivatives,

@$ij

@!
þ 2H$ij þ ðu #rÞ$ij þ $jkrkui þ $ikrkuj

¼ & 1

#
rkð#!ijkÞ; (20)

where !ijk ' cð3Þijk is the third cumulant of the DF; see

Eq. (16). By applying successive derivatives with respect
to l in Eq. (17) one thus generates an infinite hierarchy of
equations of motion for the cumulants of the DF (hereafter
cumulant hierarchy). The hierarchy is infinite because at
finite order is never closed, the cumulant of order n de-
pends on that of order nþ 1.

B. The cumulant hierarchy and orbit crossing

Such an infinite hierarchy is very difficult to solve. The
PPF approximation truncates the hierarchy assuming that
the second and higher-order cumulants of the DF are zero,
thus $ij ¼ 0, !ijk ¼ 0 in Eqs. (19) and (20) and so on.
This is equivalent to assuming the DF takes the form,

fðx;p; !Þ ¼ ½1þ %ðx; !Þ)%D½p& auðx; !Þ); (21)

for which CðlÞ ¼ lnð1þ %Þ þ l # u, and clearly all cumu-
lants of order larger than 1 vanish. Note that the PPF
approximation appears to be self-consistent, i.e. assuming
that $ij and higher-order cumulants vanish at a given time
is preserved by the hierarchy. This is so because there are
no linear or nonlinear terms in the equations of motion for
such cumulants that solely involve the density and/or ve-
locity fields as sources. This can be readily seen from the
structure of Eq. (17), after operating with two or more
derivatives rl. In other words, if C initially only contains
linear terms in l, Eq. (17) will not generate higher powers
in l.

This situation is, however, unstable under perturbations.
If somehow C develops a quadratic contribution in l, then
the nonlinear term in Eq. (17) generates a cubic term, and
this in turn generates higher orders, and so on. Therefore,
once velocity dispersion ‘‘turns on’’, all higher-order cu-
mulants do so as well. Thus a priori it is not a self-
consistent truncation to include a nonzero $ij and ignore
!ijk (which is sourced by terms solely dependent on $ij)
and higher-order cumulants. This truncation may, however,
become a good approximation in some situations, e.g. at
large scales.

Physically it is expected that even for perfectly ‘‘cold’’
initial conditions where the DF is given initially by
Eq. (21), orbit crossing during time evolution will generate

a nontrivial stress tensor and higher-order cumulants, while
as discussed above the cumulant hierarchy does not seem
to allow for this. Given that such a result from the cumulant
hierarchy is unstable to small perturbations away from cold
initial conditions, any subtlety in going from the Vlasov
equation to Eq. (17) may alter the conclusions. A more
careful look at orbit crossing in this context shows that this
suspicion is well founded.
To see how orbit crossing generates a nontrivial DF from

cold initial conditions, consider the formal solution of the
Vlasov equation expressing the conservation of the DF
along the characteristics

fðx;p; !Þ ¼ f0ðX0;P0Þ; (22)

where f0 is the initial DF, and

X 0 ' X0ðx;p; !Þ; P0 ' P0ðx;p; !Þ (23)

are the initial positions and momenta which when evolved
by the equations of motion until time ! [Eqs. (9)] lead to x
and p. That is, time evolution maps ðX0;P0Þ to ðx;pÞ at
time !, and this mapping is invertible because in phase-
space trajectories never intersect for a Hamiltonian flow.
However, orbits clearly can (and do) cross in configura-

tion space, i.e. at time ! and position x there may be more
than one orbit (with different p’s) that trace back to differ-
ent initial conditions ðX0;P0Þ. If we start from cold initial
conditions, f0 satisfies Eq. (21), and after time evolution
the DF reads, from Eq. (22)

fðx;p; !Þ ¼ ½1þ %0ðX0Þ)%D½P0 & u0ðX0Þ); (24)

where we have set a0 ' 1 and %0 and u0 are the initial
density and velocity fields obtained, typically, from
Gaussian random field initial conditions. Nowwe are ready
to see the effect of orbit crossing on the cumulant generat-
ing function CðlÞ, Eq. (14). As long as orbits do not cross,
since f0 has zero width then at fixed ðx; !Þ there is a unique
p that contributes to the momentum integral (see top panel
in Fig. 6). Thus the argument of the delta function in
Eq. (24) can be linearly related to p, and C preserves its
linear dependence on l and no higher-order cumulants are
generated.
However, as soon as orbits cross, there are many p’s at

fixed ðx; !Þ and thus many roots of the argument of the
delta function in Eq. (24), each of them corresponding to
one ‘‘stream’’; see bottom panel in Fig. 6. As a result, the
cumulant generating function reads instead

C ðx; !; lÞ ¼ ln
! X

streams at x

ð1þ %sÞel#us

"
; (25)

where we have written schematically %s and us for the
density and velocity fields of each stream, which can be
obtained by projecting each piece of the DF separately; see
Fig. 6. Clearly, if the number of streams is larger than 1, C
is a fully nonlinear function of l and all cumulants have
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Stress tensor corrections

So far we assume dark matter has zero stress, but it gets generated by orbit 
crossing:

leading order correction due to stress scales as k^2 Plin

corrections relative to the PPF approximation for both
density and velocity divergence at redshifts z ¼ 0, 0.5, 1.
We see that at z ¼ 0 the correction to the divergence power
spectrum reaches 1% at about k" 0:1h Mpc#1, while for
the density power spectrum this happens at about k"
0:2h Mpc#1. By z ¼ 1 these scales shift by about a factor
of 2. At higher redshifts they rapidly decline as the growth
factor changes rapidly before the onset of cosmic
acceleration.

These effects can be understood qualitatively, and to
some extent quantitatively, by considering the typical
size of the corrections to the velocities predicted by the
single-stream, PPF approximation, smoothed over scale R.
These corrections are, in average, of order

!rms
v ðRÞ & H f

!Z
d3kP!ðkÞW2

THðkRÞ
"
1=4

; (49)

where WTHðkRÞ is the Fourier transform of a top-hat filter
of radius R, P!ðkÞ is the power spectrum of the trace of the
velocity dispersion tensor (which is the dominant compo-
nent), and the factor H f restores the correct units to !ij

[see Eq. (34)]. Equivalently, these velocity corrections can
be interpreted as comoving position fluctuations, given by

!rmsðRÞ &
!Z

d3kP!ðkÞW2
THðkRÞ

"
1=4

: (50)

These two quantities are shown in Fig. 10. In the top panel,
the ratio of the displacement corrections from Eq. (50) to
the scale R is plotted as a function of scale. An order of
magnitude estimate of the effect on the density power
spectrum can be obtained from the following argument.
The dispersion in comoving positions given by !rmsðRÞ
smooths out density perturbations. That suppression is
approximately given by

PsmoothðkÞ " PðkÞe#2ðk!rmsð2"=kÞÞ2 : (51)

At large scales, e.g. k" 0:1h Mpc#1, this gives a suppres-
sion consistent with the previously calculated density
power spectrum corrections seen in Fig. 9.
The bottom panel shows !rms

v as a function of R,
Eq. (49). We can see that the velocity dispersion on scales
of "100h#1 Mpc is of order 15 km/s. Comparing this
dispersion with the single-stream bulk velocities on the
same scale (dashed line), we conclude that the velocity
dispersion corrections on those scales are small but, never-
theless, larger in relative terms than for the density power
spectrum, in agreement with the detailed calculation pre-
sented in Fig. 9.
In [51], it was argued that percent-level corrections from

orbit crossing to the density power spectrum are expected
at k ’ 0:1h Mpc#1 based on a model of ‘‘sticky dark
matter.’’ The effect discussed in that work is not an esti-

FIG. 9 (color online). Correction to the PPF approximation for
the velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion at red-
shifts z ¼ 0 (solid lines), z ¼ 0:5 (dashed lines) and z ¼ 1
(dotted lines). Note that the actual correction is negative in all
cases, we plot their absolute values. These corrections are
computed in linear theory, Eqs. (45) and (48), thus extrapolation
well beyond k" 0:1h Mpc#1 is only illustrative.

FIG. 10 (color online). Top panel: root mean square position
fluctuations, Eq. (50), induced by velocity dispersion smoothed
at scale R divided by R. Bottom panel: rms velocity dispersion,
Eq. (49), in solid lines compared to rms bulk motions (dashed
lines) smoothed on scale R. Note that velocity dispersion is
smoothed on scales of order 1h#1 Mpc, thus the solid line is an
underestimate at small scales. All the quantities in this figure are
evaluated at z ¼ 0.
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(Pueblas & RS 2008)

Ptot(k) = PPPF(k)− 2γk2P (k)

Pueblas & RS (2008), 
Baumann et. al (2010), 
Pietroni et al (2011), 
Carrasco et al (2012)

k2
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Estimates of gamma using IR-resummed 1loop EFT (as in Senatore&Zaldarriaga)

from P

from G

w/G.D’Amico, M.Crocce

z = 0
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Fit power spectrum (at k~0.2-0.3), predict G,
fails @2sigma @ k~0.03 already 

w/G.D’Amico, M.Crocce

z = 0

2-sigma errors
on G
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w/G.D’Amico, M.Crocce

from P

from G

z = 1

For OBS e.g. @ z=0.57  gamma~0.5  (Mpc/h)^2  is small compared with 
*quite degenerate* contributions from bias and even more RSD.
Wednesday, July 22, 2015
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II. RESULTS FROM LOOP CORRECTIONS

A. Power Spectrum

The auto-power can be written as usual, to one-loop

Pgg(k) = b2
1P (k) + b1b2Pb1b2(k) + b1γ2Pb1γ2(k) + b2

2 Pb2b2(k) + b2γ2Pb2γ2(k) + γ2
2Pγ2γ2(k)

+2b1γ
−
3 Pb1γ−3

(k) (9)

while the cross-power

Pgm(k) = b1P (k) + b2Pb2(k) + γ2Pγ2(k) + γ−3 Pγ−3
(k) (10)

The expressions are (in the following all powers inside integrands are linear)

Pb1b2(k) =
�

2F2(k− q,q)P (k− q)P (q)d3q (11)

Pb1γ2(k) = Pmc
b1γ2

(k) + P prop
b1γ2

(k)

=
�

4F2(k− q,q)K(k− q,q)P (k− q)P (q)d3q

+8P (k)
�

G2(k,q)K(k− q,q)P (q)d3q (12)

Pb2b2(k) =
1
2

�
P (k− q)P (q)d3q (13)

Pb2γ2(k) =
�

2K(k− q,q)P (k− q)P (q)d3q (14)

Pγ2γ2(k) =
�

2K(k− q,q)2P (k− q)P (q)d3q (15)

Pb1γ−3
(k) = − 8

21
P (k)

�
6K(k− q,q)K(k,q)P (q)d3q (16)

To one-loop in bias the two-pt function or power spectrum reads,

Chan, Sheth & R.S. (2012)

Bias
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Modelling BAO and RSD

Halos
gRPT

Real-space two-point function for biased tracers
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monopole

quadrupole

Power spectrum multipoles for biased tracers

hexadecapole
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Applications to BOSS

- Need efficient algorithms for calculating RSD for data beyond plane-parallel 
approx. 

- FFT estimators for power spectrum (Bianchi et al 2015,  RS. 2015) and 
bispectrum multipoles (RS. 2015), 4th-order interlaced interpolation (very 
efficient at computing power spectrum with negligible bias, <0.1% at Nyquist; 
Sefusatti et. al 2015)

1) all triangles included between kmin and kmax

2) covariances between power and bispectrum

3) fast theory computation (1 loop)

4) fast window calculations for convolving theory 
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Bispectrum multipoles
R.S. (2015)

7

the cosmic variance of �P4 is smaller than for �P4b with the

difference being smaller for the higher redshift and more

dense sample (CMASS). Therefore the more computa-

tionally expensive �P4 is preferred over the cheaper �P4b.

This is not a very significant shortcoming as �P4 is still

orders of magnitude faster than traditional N2 estimates.

B. Bispectrum

The bispectrum multipoles estimator is given by,

�B(0)
123 =

3�

i=1

�

ki

d3qi
δD(q123)

NT
123 I33

F0(q1)F0(q2)F0(q3)−N (0)
123

(53)

where the shot noise term is given by,

N (0)
123 =

3�

i=1

�

ki

d3qi
δD(q123)

NT
123 I33

�
F0(q1)F

w
0 (−q1) + cyc.

�

− 2

I33

� Ng�

j=1

−α3
Nr�

j=1

�
w3

j (54)

and for higher multipoles we obtain,

�B(�)
123 = (2� + 1)

3�

i=1

�

ki

d3qi
δD(q123)

NT
123 I33

F�(q1)F0(q2)F0(q3)

−N (�)
123 (55)

with the shot noise given by (� > 0),

N (�)
123 = (2� + 1)

3�

i=1

�

ki

d3qi
δD(q123)

NT
123 I33

�
F�(q1)F

w
0 (−q1)

+F0(q2)F
w
� (q̂1,−q2) + F0(q3)F

w
� (q̂1,−q3)

�

(56)

where

Fw
� (q̂1,q) ≡

� Ng�

j=1

+α2
Nr�

j=1

�
w2

j e
iq·xj L�(q̂1 · x̂j) (57)

and Fw
� (q̂1,q1) ≡ Fw

� (q1). If desired the estimator in

Eq. (55) can be symmetrized over its arguments in the

obvious way. In the plane-parallel limit, this estimator

for � = 2 reduces to the one in [20], which was used

to measure the bispectrum quadrupole in Nbody simula-

tions.

We can simplify Eq. (56) by assuming the thin-shell

approximation, which leads to

N (�)
123 � (2� + 1)

�

k1

d3q1

Nk1

F�(q1)Fw
0 (−q1)

I33
+

(2� + 1)

3�

i=2

L�(q̂1 · q̂i)

�

ki

d3qi

Nki

F0(qi)Fw
� (−qi)

I33

− 2

I33

� Ng�

j=1

−α3
Nr�

j=1

�
w3

j δ�0 (58)

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 3: Reduced bispectrum multipoles Q(�)
123 (� = 0, 2, 4 from

top to bottom) for galaxies in the LasDamas LRG (Mg <
−21.8) DR7 mock catalogs. The triangles correspond to k1 =
0.047 h Mpc−1, k2 = 2 k1 as a function of the angle θ between
k1 and k2.

In computing the bispectrum, an additional complex-

ity over the power spectrum case is that a search over

closed triangles has to be done [26], enforced by the

delta function in Eqs. (53) and (55). There are many

ways to do this, let us briefly discuss two options that

we have found reasonably efficient and implemented in

the past [27–29]. One is to use a fast (N lnN) algorithm

such as quicksort to sort Fourier coefficients into shells to

quickly find q3 = −q12 in shell k3 given q1 in shell k1

and q2 in shell k2. The sorting can be done once and the

results stored in disk when multiple realizations need to

be run (e.g. when running on mock catalogs) since it only

depends on grid and bin size. The other is to use FFTs

themselves to find closed triangles by using the plane-

wave representation of the delta function and factorizing

the estimator in real space, i.e.

3�

i=1

�

ki

d3qi δD(q123) F�1(q1)F�2(q2)F�3(q3)

=

�
d3x

(2π)3
F (�1)

k1
(x)F (�2)

k2
(x)F (�3)

k3
(x) (59)

where

F (�)
k (x) ≡

�

k
d3q e

iq·x F�(q) (60)

and thus for each bin ki one must do an inverse FFT to

find the F (�)
k , and then sum over real space to obtain the

bispectrum for a given k1, k2, k3. This estimator can be

� = 0

� = 2

� = 4

k1 = 0.047 h/Mpc, k2 = 2k1 Las Damas mock catalogs

vanish in
real space
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Put everything together: How well does this work?
A simple consistency test

- Measure power spectrum from BOSS DR12

- Assuming Planck cosmology, predict redshift-space matter spectrum and match 
linear bias to fix large-scale amplitude

- From linear bias, using simple arguments (+local lagrangian bias) calculate non-
local bias parameters 

- Compute the predicted galaxy bispectrum (assuming primordial Gaussianity)

- Compare to measured bispectrum
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Conclusions

- Recent progress in understanding a several nonlinear effects will allow us to 
have significantly more robust predictions about galaxy clustering

- Consistency checks between power spectrum, 2pt function (multipoles & 
wedges), bispectrum multipoles, gives us more confidence we are on solid 
ground.

- Expect significant improvements on cosmological parameters related to 
structure growth (w, f, sigma8).
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