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• I mean a perturbative bias expansion: 

• Goal is to identify which operators O and corresponding 
bias parameters bO we need to keep 

• at each order in perturbation theory (PT) 

• be agnostic: should apply to any tracer 

• Why ? PT is the only approach that allows us a rigorous 
error control on our theory prediction - for any tracer

Clarification: what do I mean 
by bias ?
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Bias: open questions
• Historically, “local bias” ansatz: 

• Recently, has become clear that we need to 
include biasing with respect to tidal field 

• Often referred to as “nonlocal bias”
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Bias: open questions
• We can thus use set of operators 

• But this leaves several questions: 

• How do we know it is complete (describes any 
tracer ?) 

• Lagrangian vs Eulerian biasing (evaluate O’s at initial 
or final time ?) 

• What about scale-dependent bias ? 

• And velocity bias ?
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A general framework for 
bias

• Local galaxy density ng can only 
depend on local observables, 
determined by equivalence 
principle: 

• density δ and tidal field Kij * 

• However, in general ng will depend 
on these observables along the 
entire past trajectory (geodesic) 

• Equivalently, galaxy density 
depends on time derivatives of 
local observables

initial conditions

observation time

Senatore, MSZ

* also, spatial derivatives -> later; assume Gaussian adiab. IC here



• That is, set of operators should include δ, Kij as well 
as Dn/Dtn {δ2, Kij, …}, where D/Dt is convective (or 
Lagrangian) time derivative 

• Want to work out which terms to keep at given 
order in PT: i.e., need a complete non-redundant 
set (without double-counting) of operators 

• MSZ give Eulerian and Lagrangian examples 

• Key trick: use that in PT, 

General bias expansion

MSZ� = D(t)�[1](x) +D2(t)�[2](x) + · · ·� = D(t)�[1](x) +D2(t)�[2](x) + · · ·� = D(t)�[1](x) +D2(t)�[2](x) + · · ·



General bias expansion

In the second line of Eq. (2.9), we have introduced a stochastic variable ✏⇤(x) (considered first
order in perturbations) which is defined on the formation time slice and captures the fluctu-
ations in galaxy density that are uncorrelated with long-wavelength perturbations. However,
the statistical properties of the stochastic term in general also depend on local observables.
Thus, in order to keep track of the e↵ect of stochasticity up to quadratic order in fluctuations
we write:
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where ✏⇤↵ are stochastic variables. At the order we are working in, for two-point correlation
functions one needs to know h✏⇤
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We solve the above system as described in App. A, and arrive at the following expression
at later times along the fluid trajectory:
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i.e. a term which cannot be written as a local combination of � and Kij . Thus, time evolution
has introduced a term which we naively would not have written down at the initial time,
Eq. (2.9). The Eulerian bias coe�cients bEO are given in terms of b⇤O in Eq. (A.20) and
Eq. (A.25). Let us quote some of them for reference:
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where D⇤ = D(⌧⇤)/D(⌧). The Eulerian stochasticity terms ✏E↵ are given in Eq. (A.21) and
Eq. (A.29).

In general, obtaining these bias coe�cients requires a detailed calculation. However
there is a subset of operators for which obtaining the time dependence of the bias parameters
is rather straightforward. We will outline the derivation and then comment on the general
structure of Eulerian bias.
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Nonlocal* term, induced by time evolution 

(this term was introduced in different form before; 
truly new operators from evolution appear at 4th 
order)

• Example: up to third order,

MSZ



Virtues of a complete bias 
parametrization

• Unambiguous set of bias parameters at each order in PT 

• E.g., want to calculate N-pt function to m loops ? This 
tells you exactly how many and which biases you 
need 

• Works equivalently in Eulerian and Lagrangian space (or 
anything in between) 

• Does not make any assumptions about where in time 
halo/galaxy formation happens

MSZ



Higher derivative biases
• Treatment so far is valid if density and tidal 

field perturbations are effectively spatially 
constant as far as the local galaxy is 
concerned: lowest order in spatial derivatives 

• However, galaxies will care about detailed 
matter distribution within in some finite region 
~L around them 

• Dependence on matter distribution (a 
functional) can be expanded in terms of 
spatial derivatives:

L

Scale-dep. bias ~k2L2 
�g � L2@2�, L4@4�, L2@i�@

i� · · ·



Virtues of higher derivative 
biases

• Physically, they are there (e.g. required for consistency 
by renormalization) 

• By marginalizing over L, and coefficients, we effectively 
smoothly cut off information on small scales which 
depend on details of galaxy formation, feedback, etc. 

• Fitting P(k) and ξ(r) then amounts to the same 
information - not true for sharp kmax and rmin ! 

• Given matter P(k) and L, theory tells us how many 
higher derivative biases we need at desired order in PT



Remark: what is “nonlocal” 
bias ?

• All operators in bias expansion have to be local observables 
- in this sense, bias is always local! 

• Beyond this, it is a matter of definition: nonlocal bias is… 

• anything that is not a power of δ, e.g. (Kij)2         
(traditional bias literature)  

• anything that is nonlocal in           , e.g.                        
(some current literature) 

• These latter terms are local observables because they 
are convective time derivatives of local observables
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i.e. a term which cannot be written as a local combination of � and Kij . Thus, time evolution
has introduced a term which we naively would not have written down at the initial time,
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where D⇤ = D(⌧⇤)/D(⌧). The Eulerian stochasticity terms ✏E↵ are given in Eq. (A.21) and
Eq. (A.29).

In general, obtaining these bias coe�cients requires a detailed calculation. However
there is a subset of operators for which obtaining the time dependence of the bias parameters
is rather straightforward. We will outline the derivation and then comment on the general
structure of Eulerian bias.
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For completeness…
• In general, also have to allow for stochasticity. 

Each operator should come, in addition, multiplied 
by a stochastic field ε. 

• Velocity bias: at lowest order in derivatives, the 
equivalence principle requires that there is no 
velocity bias. Leading correction is of the form
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ations in galaxy density that are uncorrelated with long-wavelength perturbations. However,
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MSZ

�stochg =

vg = v + L2@2v

where εi are completely 
characterized by 1-pt PDF

For example, up to third order,  



Summary (I)
• There exists a unique bias expansion which describes 

the relation between a general tracer and matter 
perturbations - based only on homogeneity/isotropy and 
the equivalence principle. 

• These should allow for rigorous cosmology constraints 
from galaxy (and Lyα) statistics on quasilinear scales, 
without making any assumptions about galaxy formation, 
HOD, etc.  

• There are two cut-offs of the perturbative description: the 
nonlinear scale where δ ~1, and L, the scale over which 
galaxy formation happens. Which one is bigger is still 
unknown ! (and presumably depends on galaxy sample)



Summary (II)
• Of course, this results in a large number of bias 

parameters: here, simulations and semi-analytics can 
be extremely useful by constraining relations 
between bias parameters* 

• Further topics not covered here:   (please ask!) 

• rigorous embedding in GR context 

• connection to initial conditions (fNL in single field…) 

• application to intrinsic alignments
*For precision measurements of bδn, see Titouan Lazeyras’ poster!


