Testing Cosmological Models with Galaxy Surveys

Alvise Raccanelli

with M. Kamionkowski, A. Szalay

Outline

Boring part

Fun part

Alvise Raccanelli

Future surveys

We are going to probe much larger volumes in the next few years

Alvise Raccanelli

Future surveys

We need a very precise theoretical modeling

Precision of data will improve

Possible to test more exotic models

Alvise Raccanelli JOHNS Ho

Observed galaxy correlation

 $\Delta = \delta + \text{RSD}(+\kappa + \text{pot})$

$$\xi^{obs} = \sum_{XY} \langle XY \rangle$$

naming issue: relativistic corrections, magnification bias, unified rsd+lensing, ...

Radial Correlations

 $\langle \delta \kappa \rangle$

Observed galaxy correlation

Alvise Raccanelli

Antisymmetric galaxy cross-correlations

Dai et al., today

Antisymmetric galaxy cross-correlations as a cosmological probe

Liang Dai¹, Marc Kamionkowski¹, Ely D. Kovetz¹, Alvise Raccanelli¹, and Maresuke Shiraishi² ¹Department of Physics and Astronomy, Johns Hopkins University,

3400 N. Charles St., Baltimore, MD 21218, USA ²Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583, Japan (Dated: July 19, 2015)

The auto-correlation between two members of a galaxy population is symmetric under the interchange of the two galaxies being correlated. The *cross*-correlation between two different types of galaxies, separated by a vector \mathbf{r} , is not necessarily the same as that for a pair separated by $-\mathbf{r}$. Local anisotropies in the two-point cross-correlation function may thus indicate a specific direction which when mapped as a function of position trace out a vector field. This vector field can then be decomposed into longitudinal and transverse components, and those transverse components written as positive- and negative-helicity components. A locally asymmetric cross-correlation of the longitudinal type arises naturally in halo clustering, even with Gaussian initial conditions, and could be enhanced with local-type non-Gaussianity. Early-Universe scenarios that introduce a vector field may also give rise to such effects. These antisymmetric cross-correlations also provide a new possibility to seek a preferred cosmic direction correlated with the hemispherical power asymmetry in the cosmic microwave background and to seek a preferred location associated with the CMB cold spot. New ways to seek cosmic parity breaking are also possible.

preferred cosmic direction

Alvise Raccanelli

Cosmological tests

Gravity

non-Gaussianity

Dark Energy

Dark Matter

Alvise Raccanelli

Cold Dark Matter

Self-Interacting?

"Dark atoms"?

NATURE | NEWS

< 🖂 🖶

Did dark matter kill the dinosaurs?

The Solar System's periodic passage through a 'dark disk' on the galactic plane could trigger comet bombardments that would cause mass extinctions.

Elizabeth Gibney

07 March 2014

Rights & Permissions

Mark Stevenson/Stocktrek Images/Corbis

Mass extinctions such as the one that wiped out the dinosaurs seem to happen with regularity, pointing to possible cosmic causes.

Alvise Raccanelli

2 grava

Strachart.

Double disk

Alvise Raccanelli

PIDM

Cyr-Racine et al., 2013

Alvise Raccanelli

Did Dark Matter Kill the Dinosaurs? Probably Not. But It's a Fun idea.

By Phil Plait

Alvise Raccanelli

More to come: stay tuned

non-Gaussianity SKA HI galaxy survey

Camera et al., 2014

Alvise Raccanelli

non-Gaussianity primordial vector fields (other shapes)

Shape	$\mathrm{EMU}_C^{100\mu Jy}$	$\mathrm{EMU}_O^{100\mu Jy}$	$\mathrm{EMU}_C^{50\mu Jy}$	$\mathrm{EMU}_{O}^{50\mu Jy}$	$SKA_C^{5\mu Jy}$	$\mathrm{SKA}_O^{5\mu Jy}$	SKA_C^{100nJy}	SKA_O^{100nJy}	Futuristic	CMB
$\sigma(f_{ m NL})$ local	11.94	5.54	9.26	4.37	1.62	1.06	0.67	0.51	0.21	5.7
$\sigma(f_{\rm NL})$ equilateral	221.14	79.84	179.03	62.58	22.24	9.09	6.18	2.83	0.42	70
$\sigma(f_{ m NL})$ orthogonal	102.97	39.04	82.25	30.69	15.30	7.40	6.71	3.35	0.54	33
$\sigma(f_{ m NL})$ folded	151.48	56.45	121.50	44.35	20.29	9.25	8.15	4.14	0.96	65
$\sigma(c_{L=1})$	1916.29	721.15	1519.8	558.35	200.62	78.32	41.81	17.54	2.14	103
$\sigma(c_{L=2})$	10874.9	4113.82	8436.7	2952.5	1098.93	393.60	193.48	76.55	9.22	26

A. Raccanelli, et al., today

radio continuum + some redshift information (e.g. B. Menard's group works)

Alvise Raccanelli

Quintessence?

Requires flat potential

ok if quintessence field is an axion-like field

Still fine-tuning problems

Potentially solved by string-axiverse

"why now" problem

helps with fine tuning

Kamionkowski et al., 2014

Alvise Raccanelli

Cosmological constraints to an axiverse-inspired quintessence field

Razieh Emami^{1,2}, Daniel Grin³, Marc Kamionkowski², Josef Pradler⁴, and Alvise Raccanelli²

It was recently suggested that accelerated cosmic expansion might be driven by an axion-like quintessence field with a sub-Planckian decay constant, an idea inspired by the string axiverse. The scenario requires that the axion field be initially very near the maximum of its potential. The model is parametrized by an axion decay constant $f = \alpha M_p$, with $\alpha \sim 0.1$ and $M_{\rm pl}$ the reduced Planck mass, and with an axion mass m_a and an initial misalignment angle $|\theta_i|$, which is taken to be close to π . Here this parameter space is mapped onto the parameter space of the dark-energy density $\Omega_{\rm de}$, equation-of-state parameter w, and the equation-of-state time-evolution parameter w_a , in order to determine they m_a and θ_i values consistent with axion dark energy today. Current cosmological data (measurements of the baryon acoustic oscillation scale and *Planck* measurements of CMB temperature anisotropies) are then used to constrain this parameter space and thus the α -m- θ_i parameter space.

$$V(\phi) = \Lambda^4 \left[1 - \cos(\phi/f)\right]$$

Alvise Raccanelli

Alvise Raccanelli

Alvise Raccanelli JOHNS HOPKINS

Dark matter density from axion misalignment

D. Walker, B. Horn, A. Raccanelli,

M. Kamionkowski, D. Spergel

string theory scenario in which dark matter is made by a multitude of axions axions decay into smaller mass axions

Alvise Raccanelli

Conclusions

Future surveys will be very powerful

Boring (but necessary) part: Test "standard" parameters More precise modeling (large and small scales) Fun (and potentially high reward) part: Test exotic models

Alvise Raccanelli 🛛 🐺 JOHn

