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Modified gravity models - Motivation

• need to drive accelerated expansion (large scales / low 
densities) 

• for modified gravity: 
➡ need to satisfy solar system constraints (small scales 

/ dense environments) 

• some freedom to modify gravity on intermediate galaxy, 
cluster, LSS scales (GR not that well tested there)

vacuum energy? 
dynamical dark energy? 

modified gravity?



Which model? Let’s go for f(R)-gravity first.

• Einstein-Hilbert action replaced by 

➡ varying with respect to the metric yields 

➡ modified Friedmann equations
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1 INTRODUCTION

2 F(R)-GRAVITY

S =

Z
d4x

p
�g

✓
R+ f(R)
16⇡G

+ Lm

◆
, (1)

The field equation for fR = df(R)
dR is then given by

r2fR =
1
3c2

(�R� 8⇡G�⇢) , (2)

where ... restore factors of c here ... The gravitational po-
tential � satisfies

r2� =
16⇡G
3

�⇢� 1
6
�R, (3)

In the model described by Hu & Sawicki (2007), f(R) is
given by

f(R) = �m2 c1
�

R
m2

�n

c2
�

R
m2

�n
+ 1

, (4)

where m2 ⌘ H2
0⌦m. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
is close to ⇤CDM we reqiure c2(R/m2)n ⌧ 1. f(R) is then
given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term �m2c1/c2 equal to �2⇤, where ⇤ is the
desired cosmological constant, then closely recovers the ex-
pansion history of ⇤CDM. This can be rephrased in a rela-
tion between the parameters c1 and c2, namely

c1
c2

= 6
⌦⇤

⌦m
, (5)

where ⌦⇤ and ⌦m are the vacuum and mean matter densities
in units of the critical density of the Universe.

fR = �n
c1
�

R
m2

�n�1

⇥
c2
�

R
m2

�n
+ 1
⇤2 , (6)

If c2(R/m2)n ⌧ 1, this reduces to

fR ⇡ �n
c1
c22

✓
m2

R

◆n+1

. (7)

In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
dH
d ln a

H, (8)

where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
ten as

R̄(a) = 3m2

✓
a�3 + 4

⌦⇤

⌦m

◆
. (9)

Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0

✓
R̄0

R̄(a)

◆2

= f̄R0

 
1 + 4 ⌦⇤

⌦m

a�3 + 4 ⌦⇤
⌦m

!2

, (10)

�R = R̄(a)

0

@
s

f̄R(a)
fR

� 1

1

A . (11)

Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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2010; Lombriser et al. 2012a; Lam et al. 2012), redshift-
space distortions (Jennings et al. 2012), and the integrated
Sachs-Wolfe effect (Cai et al. 2013).

Our modified gravity simulation code, mg-gadget

(Puchwein et al. 2013), allows us to follow baryonic physics
and modified gravity at the same time. This offers the op-
portunity to investigate the intracluster medium tempera-
tures, the hydrostatic mass bias, the X-ray luminosities and
the thermal Sunyaev-Zeldovich signals of galaxy cluster and
groups. Here, we assess how f(R) gravity affects these quan-
tities, as well as cluster velocity dispersions, subhalo abun-
dances and dynamical mass estimates.

In Sect. 2, we briefly summarize the main properties of
the f(R) gravity model which we consider. An overview of
how our modified gravity simulation code works and what
runs have been performed with it is provided in Sect. 3. Our
results are presented in Sect. 4. We summarize our findings
and draw our conclusions in Sect. 5.

2 f(R) GRAVITY

f(R) gravity models generalize Einstein’s general relativity
by adding a function f(R) to the Ricci scalar R in the grav-
itational part of the action. The action is then given by

S =

Z

d4x
√
−g

»

R + f(R)
16πG

+ Lm

–

, (1)

where g is the determinant of the metric, G is the gravita-
tional constant and Lm is the Lagrangian density of matter.
Demanding that the variation of this action with respect to
the metric vanishes leads to the modified Einstein equations
(Buchdahl 1970)

Gµν + fRRµν −
„

f
2
− !fR

«

gµν −∇µ∇νfR = 8πGTµν ,

(2)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor and
fR ≡ df/dR. Models which are compatible with observa-
tional constraints require |fR| ≪ 1. On scales much smaller
than the horizon, the quasi-static approximation is valid
(Oyaizu 2008; Noller et al. 2013) so that time derivatives
can be neglected in the above equation. Together, this al-
lows us to simplify the field equation for fR to (e.g. Oyaizu
(2008), also see Appendix A)

∇2fR =
1
3

(δR − 8πGδρ) , (3)

where δR and δρ denote the perturbations in the scalar cur-
vature and matter density respectively. Considering Eq. (2)
in the Newtonian limit, a modified Poisson equation for the
gravitational potential is obtained (Hu & Sawicki 2007, also
see Appendix A)

∇2Φ =
16πG

3
δρ − 1

6
δR. (4)

In order to follow cosmic structure formation in f(R) mod-
els, our code needs to solve the two partial differential equa-
tions (3) and (4). Especially, the former equation is chal-
lenging to solve due to its non-linearity.

But let us first consider our choice of f(R). Since GR
is well tested in the Solar system, modified gravity models

should show the same behavior as GR in high density re-
gions, or more precisely in our local environment within the
Milky Way. This is achieved in a class of models which ex-
hibit a chameleon mechanism, such as the model proposed
by Hu & Sawicki (2007)

f(R) = −m2 c1

`

R
m2

´n

c2

`

R
m2

´n
+ 1

, (5)

where m2 ≡ H2
0Ωm. For a suitable choice of the parameters

c1, c2 and n, the chameleon mechanism screens f(R) effects
on gravity in high density regions. By also requiring

c1

c2
= 6

ΩΛ

Ωm
and c2

„

R
m2

«n

≫ 1. (6)

an expansion history of the universe is obtained which
closely mimics the one implied by a ΛCDM cosmological
model (see e.g. Hu & Sawicki 2007). In this model, the
derivative of f(R) is given by

fR = −n
c1

`

R
m2

´n−1

ˆ

c2

`

R
m2

´n
+ 1

˜2
≈ −n

c1

c2
2

„

m2

R

«n+1

, (7)

where the second equality holds in the assumed limit
c2

`

R
m2

´n ≫ 1. For a more convenient characterization of
a specific f(R) model, the parameter set c1and c2 can be
replaced by the background value of fR at z = 0, f̄R0, as fol-
lows: The background curvature of a Friedmann-Robertson-
Walker universe is given by

R̄ = 12H2 + 6
dH

d ln a
H, (8)

which translates into

R̄ = 3m2

»

a−3 + 4
ΩΛ

Ωm

–

, (9)

for a flat ΛCDM expansion history. Plugging this equation
for a = 1 into Eq. (7) and additionally demanding that the
first equality in Eq. (6) is satisfied constrains the parameters
c1 and c2 completely for given values of ΩΛ, Ωm, H0, f̄R0 and
n. Hence, f̄R0 and n can be used instead of c1, c2 and n to
completely specify the model. In the following sections, we
will therefore describe the considered f(R) models by their
value of f̄R0. n is fixed to 1 in the simulations presented in
this work.

3 THE SIMULATIONS

Our simulations were carried out with the modified gravity
simulation code mg-gadget (Puchwein et al. 2013). The
code is an extension and modification of p-gadget3, which
is itself based on gadget-2 (Springel 2005). An advantage
of using p-gadget3 as a basis for the modified gravity code
is that numerical models for a large number of physical pro-
cesses, such as hydrodynamics, gas cooling, star formation
and associated feedback processes are already implemented
in this code. It is, hence, possible to follow such baryonic
processes and modified gravity at the same time. Especially
the possibility to account for hydrodynamics in modified
gravity simulations is essential for the analysis carried out
in this work.

Here, we provide only a very brief overview of how the
mg-gadget code solves the partial differential equations
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itational part of the action. The action is then given by
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√
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R + f(R)
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, (1)

where g is the determinant of the metric, G is the gravita-
tional constant and Lm is the Lagrangian density of matter.
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the metric vanishes leads to the modified Einstein equations
(Buchdahl 1970)
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− !fR
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gµν −∇µ∇νfR = 8πGTµν ,

(2)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor and
fR ≡ df/dR. Models which are compatible with observa-
tional constraints require |fR| ≪ 1. On scales much smaller
than the horizon, the quasi-static approximation is valid
(Oyaizu 2008; Noller et al. 2013) so that time derivatives
can be neglected in the above equation. Together, this al-
lows us to simplify the field equation for fR to (e.g. Oyaizu
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∇2fR =
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3

(δR − 8πGδρ) , (3)

where δR and δρ denote the perturbations in the scalar cur-
vature and matter density respectively. Considering Eq. (2)
in the Newtonian limit, a modified Poisson equation for the
gravitational potential is obtained (Hu & Sawicki 2007, also
see Appendix A)

∇2Φ =
16πG

3
δρ − 1

6
δR. (4)

In order to follow cosmic structure formation in f(R) mod-
els, our code needs to solve the two partial differential equa-
tions (3) and (4). Especially, the former equation is chal-
lenging to solve due to its non-linearity.

But let us first consider our choice of f(R). Since GR
is well tested in the Solar system, modified gravity models

should show the same behavior as GR in high density re-
gions, or more precisely in our local environment within the
Milky Way. This is achieved in a class of models which ex-
hibit a chameleon mechanism, such as the model proposed
by Hu & Sawicki (2007)

f(R) = −m2 c1
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, (5)

where m2 ≡ H2
0Ωm. For a suitable choice of the parameters

c1, c2 and n, the chameleon mechanism screens f(R) effects
on gravity in high density regions. By also requiring

c1

c2
= 6

ΩΛ

Ωm
and c2

„

R
m2

«n

≫ 1. (6)

an expansion history of the universe is obtained which
closely mimics the one implied by a ΛCDM cosmological
model (see e.g. Hu & Sawicki 2007). In this model, the
derivative of f(R) is given by

fR = −n
c1

`

R
m2

´n−1

ˆ

c2

`
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m2

´n
+ 1

˜2
≈ −n

c1
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„
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, (7)

where the second equality holds in the assumed limit
c2

`

R
m2

´n ≫ 1. For a more convenient characterization of
a specific f(R) model, the parameter set c1and c2 can be
replaced by the background value of fR at z = 0, f̄R0, as fol-
lows: The background curvature of a Friedmann-Robertson-
Walker universe is given by

R̄ = 12H2 + 6
dH

d ln a
H, (8)

which translates into

R̄ = 3m2

»

a−3 + 4
ΩΛ

Ωm

–

, (9)

for a flat ΛCDM expansion history. Plugging this equation
for a = 1 into Eq. (7) and additionally demanding that the
first equality in Eq. (6) is satisfied constrains the parameters
c1 and c2 completely for given values of ΩΛ, Ωm, H0, f̄R0 and
n. Hence, f̄R0 and n can be used instead of c1, c2 and n to
completely specify the model. In the following sections, we
will therefore describe the considered f(R) models by their
value of f̄R0. n is fixed to 1 in the simulations presented in
this work.

3 THE SIMULATIONS

Our simulations were carried out with the modified gravity
simulation code mg-gadget (Puchwein et al. 2013). The
code is an extension and modification of p-gadget3, which
is itself based on gadget-2 (Springel 2005). An advantage
of using p-gadget3 as a basis for the modified gravity code
is that numerical models for a large number of physical pro-
cesses, such as hydrodynamics, gas cooling, star formation
and associated feedback processes are already implemented
in this code. It is, hence, possible to follow such baryonic
processes and modified gravity at the same time. Especially
the possibility to account for hydrodynamics in modified
gravity simulations is essential for the analysis carried out
in this work.

Here, we provide only a very brief overview of how the
mg-gadget code solves the partial differential equations

c⃝ 0000 RAS, MNRAS 000, 000–000

with scalar degree of freedom



f(R)-gravity

• in the quasi-static limit perturbations in a FRW universe 
satisfy 

• the gravitational potential is given by
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1 INTRODUCTION

2 F(R)-GRAVITY

S =

Z
d4x

p
�g

✓
R+ f(R)
16⇡G

+ Lm

◆
, (1)

The field equation for fR = df(R)
dR is then given by

r2fR =
1
3c2

(�R� 8⇡G�⇢) , (2)

where ... restore factors of c here ... The gravitational po-
tential � satisfies

r2� =
16⇡G
3

�⇢� 1
6
�R, (3)

In the model described by Hu & Sawicki (2007), f(R) is
given by

f(R) = �m2 c1
�

R
m2

�n

c2
�

R
m2

�n
+ 1

, (4)

where m2 ⌘ H2
0⌦m. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
is close to ⇤CDM we reqiure c2(R/m2)n ⌧ 1. f(R) is then
given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term �m2c1/c2 equal to �2⇤, where ⇤ is the
desired cosmological constant, then closely recovers the ex-
pansion history of ⇤CDM. This can be rephrased in a rela-
tion between the parameters c1 and c2, namely

c1
c2

= 6
⌦⇤

⌦m
, (5)

where ⌦⇤ and ⌦m are the vacuum and mean matter densities
in units of the critical density of the Universe.

fR = �n
c1
�

R
m2

�n�1

⇥
c2
�

R
m2

�n
+ 1
⇤2 , (6)

If c2(R/m2)n ⌧ 1, this reduces to

fR ⇡ �n
c1
c22

✓
m2

R

◆n+1

. (7)

In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
dH
d ln a

H, (8)

where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
ten as

R̄(a) = 3m2

✓
a�3 + 4

⌦⇤

⌦m

◆
. (9)

Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0

✓
R̄0

R̄(a)

◆2

= f̄R0

 
1 + 4 ⌦⇤

⌦m

a�3 + 4 ⌦⇤
⌦m

!2

, (10)

�R = R̄(a)

0
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s

f̄R(a)
fR

� 1

1

A . (11)

Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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Chameleon f(R)-gravity

• High curvature regime 

• Low curvature regime 

➡ need f(R) for which solar system lives in high curvature 
regime
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The field equation for fR = df(R)
dR is then given by

r2fR =
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(�R� 8⇡G�⇢) , (2)

where ... restore factors of c here ... The gravitational po-
tential � satisfies
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16⇡G
3

�⇢� 1
6
�R, (3)

In the model described by Hu & Sawicki (2007), f(R) is
given by
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c2
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R
m2

�n
+ 1

, (4)

where m2 ⌘ H2
0⌦m. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
is close to ⇤CDM we reqiure c2(R/m2)n ⌧ 1. f(R) is then
given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term �m2c1/c2 equal to �2⇤, where ⇤ is the
desired cosmological constant, then closely recovers the ex-
pansion history of ⇤CDM. This can be rephrased in a rela-
tion between the parameters c1 and c2, namely

c1
c2

= 6
⌦⇤

⌦m
, (5)

where ⌦⇤ and ⌦m are the vacuum and mean matter densities
in units of the critical density of the Universe.
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�
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⇤2 , (6)

If c2(R/m2)n ⌧ 1, this reduces to

fR ⇡ �n
c1
c22

✓
m2

R

◆n+1

. (7)

In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
dH
d ln a

H, (8)

where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
ten as

R̄(a) = 3m2

✓
a�3 + 4

⌦⇤

⌦m

◆
. (9)

Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0

✓
R̄0

R̄(a)

◆2

= f̄R0
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⌦m

a�3 + 4 ⌦⇤
⌦m

!2

, (10)

�R = R̄(a)

0
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f̄R(a)
fR

� 1

1

A . (11)

Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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2012a), halo velocity dispersions (Schmidt 2010; Lam et al. 2012;
Lombriser et al. 2012b), redshift-space distortions (Jennings et al.
2012) and the integrated Sachs–Wolfe effect (Cai et al. 2014).

Our modified gravity simulation code, MG-GADGET (Puchwein
et al. 2013), allows us to follow baryonic physics and modified
gravity at the same time. This offers the opportunity to investigate
the intracluster medium (ICM) temperatures, the hydrostatic mass
bias, the X-ray luminosities and the thermal Sunyaev–Zeldovich
(SZ) signals of galaxy cluster and groups. Here, we assess how f (R)
gravity affects these quantities, as well as cluster velocity disper-
sions, subhalo abundances and dynamical mass estimates.

In Section 2, we briefly summarize the main properties of the
f (R) gravity model which we consider. An overview of how our
modified gravity simulation code works and what runs have been
performed with it is provided in Section 3. Our results are presented
in Section 4. We summarize our findings and draw our conclusions
in Section 5.

2 f (R) G RAVITY

f (R) gravity models generalize Einstein’s general relativity by
adding a function f (R) to the Ricci scalar R in the gravitational
part of the action. The action is then given by

S =
∫

d4x
√

−g

[
R + f (R)

16πG
+ Lm

]
, (1)

where g is the determinant of the metric, G is the gravitational
constant and Lm is the Lagrangian density of matter. Demanding
that the variation of this action with respect to the metric vanishes
leads to the modified Einstein equations (Buchdahl 1970):

Gµν + fRRµν −
(

f

2
− !fR

)
gµν − ∇µ∇νfR = 8πGTµν, (2)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor and fR ≡ df/dR.
Models which are compatible with observational constraints require
|fR| ≪ 1. On scales much smaller than the horizon, the quasi-static
approximation is valid (Oyaizu 2008; Noller, von Braun-Bates &
Ferreira 2014) so that time derivatives can be neglected in the above
equation. Together, this allows us to simplify the field equation for
fR to (e.g. Oyaizu 2008, also see Appendix A)

∇2fR = 1
3

(δR − 8πGδρ) , (3)

where δR and δρ denote the perturbations in the scalar curvature
and matter density, respectively. Considering equation (2) in the
Newtonian limit, a modified Poisson equation for the gravitational
potential is obtained (Hu & Sawicki 2007, also see Appendix A):

∇2$ = 16πG

3
δρ − 1

6
δR. (4)

In order to follow cosmic structure formation in f (R) models, our
code needs to solve the two partial differential equations (3) and
(4). The former equation is particularly challenging to solve due to
its non-linearity.

However let us first consider our choice of f (R). Since GR is well
tested in the Solar system, modified gravity models should show the
same behaviour as GR in high-density regions, or more precisely in
our local environment within the Milky Way. This is achieved in a
class of models which exhibit a chameleon mechanism, such as the
model proposed by Hu & Sawicki (2007),

f (R) = −m2 c1
(

R
m2

)n

c2
(

R
m2

)n + 1
, (5)

where m2 ≡ H 2
0 %m. For a suitable choice of the parameters c1,

c2 and n, the chameleon mechanism screens f (R) effects in high-
density regions. By also requiring

c1

c2
= 6

%&

%m
and c2

(
R

m2

)n

≫ 1, (6)

an expansion history of the universe is obtained which closely mim-
ics the one inferred with a &CDM cosmological model (see e.g. Hu
& Sawicki 2007). In this scenario, the derivative of f (R) is given
by

fR = −n
c1

(
R
m2

)n−1

[
c2

(
R
m2

)n + 1
]2 ≈ −n

c1

c2
2

(
m2

R

)n+1

, (7)

where the second equality holds in the assumed limit c2
(

R
m2

)n ≫ 1.
For a more convenient characterization of a specific f (R) model, the
parameter set c1 and c2 can be replaced by the background value
of fR at z = 0, f̄ R0, as follows: the background curvature of a
Friedmann–Robertson–Walker universe is given by

R̄ = 12H 2 + 6
dH

d ln a
H, (8)

which translates into

R̄ = 3m2
[
a−3 + 4

%&

%m

]
(9)

for a flat &CDM expansion history. Plugging this equation for
a = 1 into equation (7) and additionally demanding that the first
equality in equation (6) is satisfied constrains the parameters c1 and
c2 completely for given values of %&, %m, H0, f̄ R0 and n. Hence,
f̄ R0 and n can be used instead of c1, c2 and n to completely specify
the model. In the following sections, we will therefore describe the
considered f (R) models by their value of f̄ R0. n is fixed to 1 in the
simulations presented in this work.

3 TH E S I M U L AT I O N S

Our simulations were carried out with the modified gravity sim-
ulation code MG-GADGET (Puchwein et al. 2013). The code is an
extension and modification of P-GADGET3, which is itself based on
GADGET-2 (Springel 2005). An advantage of using P-GADGET3 as a
basis for the modified gravity code is that numerical models for
a large number of physical processes such as hydrodynamics, gas
cooling, star formation and associated feedback processes are al-
ready implemented in this code. It is, hence, possible to follow
such baryonic processes and modified gravity at the same time. Es-
pecially the possibility to account for hydrodynamics in modified
gravity simulations is essential for the analysis carried out in this
work.

Here, we provide only a very brief overview of how the MG-
GADGET code solves the partial differential equations that arise in
f (R) gravity. A detailed description of the code functionality and the
algorithms that are employed is given in Puchwein et al. (2013). To
solve the equation for fR, i.e. equation (3), the code uses an iterative
multigrid-accelerated Newton–Gauss–Seidel relaxation scheme on
an adaptively refined mesh. This method is computationally effi-
cient, well suited for very non-linear equations and provides high
spatial resolution in high-density regions, like in collapsed haloes.
Note however, that instead of solving directly for fR, the code it-
eratively computes u ≡ ln(fR/f̄ R(a)). This ensures that fR cannot
attain unphysical positive values due to the finite step size of the
iterative solver, which makes the code numerically more stable (see
also Oyaizu 2008).
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define the model. To obtain a cosmic expansion history that
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given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
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In a Friedmann-Robertson-Walker universe the scalar cur-
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where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
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R̄(a) = 3m2
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Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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define the model. To obtain a cosmic expansion history that
is close to ⇤CDM we reqiure c2(R/m2)n ⌧ 1. f(R) is then
given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term �m2c1/c2 equal to �2⇤, where ⇤ is the
desired cosmological constant, then closely recovers the ex-
pansion history of ⇤CDM. This can be rephrased in a rela-
tion between the parameters c1 and c2, namely

c1
c2

= 6
⌦⇤

⌦m
, (5)

where ⌦⇤ and ⌦m are the vacuum and mean matter densities
in units of the critical density of the Universe.

fR = �n
c1
�

R
m2

�n�1

⇥
c2
�

R
m2

�n
+ 1
⇤2 , (6)

If c2(R/m2)n ⌧ 1, this reduces to
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In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
dH
d ln a

H, (8)

where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
ten as

R̄(a) = 3m2
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. (9)

Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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where m2 ≡ H2
0Ωm. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
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Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and δR are
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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2012a), halo velocity dispersions (Schmidt 2010; Lam et al. 2012;
Lombriser et al. 2012b), redshift-space distortions (Jennings et al.
2012) and the integrated Sachs–Wolfe effect (Cai et al. 2014).

Our modified gravity simulation code, MG-GADGET (Puchwein
et al. 2013), allows us to follow baryonic physics and modified
gravity at the same time. This offers the opportunity to investigate
the intracluster medium (ICM) temperatures, the hydrostatic mass
bias, the X-ray luminosities and the thermal Sunyaev–Zeldovich
(SZ) signals of galaxy cluster and groups. Here, we assess how f (R)
gravity affects these quantities, as well as cluster velocity disper-
sions, subhalo abundances and dynamical mass estimates.

In Section 2, we briefly summarize the main properties of the
f (R) gravity model which we consider. An overview of how our
modified gravity simulation code works and what runs have been
performed with it is provided in Section 3. Our results are presented
in Section 4. We summarize our findings and draw our conclusions
in Section 5.

2 f (R) G RAVITY

f (R) gravity models generalize Einstein’s general relativity by
adding a function f (R) to the Ricci scalar R in the gravitational
part of the action. The action is then given by

S =
∫

d4x
√

−g

[
R + f (R)

16πG
+ Lm

]
, (1)

where g is the determinant of the metric, G is the gravitational
constant and Lm is the Lagrangian density of matter. Demanding
that the variation of this action with respect to the metric vanishes
leads to the modified Einstein equations (Buchdahl 1970):

Gµν + fRRµν −
(

f

2
− !fR

)
gµν − ∇µ∇νfR = 8πGTµν, (2)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor and fR ≡ df/dR.
Models which are compatible with observational constraints require
|fR| ≪ 1. On scales much smaller than the horizon, the quasi-static
approximation is valid (Oyaizu 2008; Noller, von Braun-Bates &
Ferreira 2014) so that time derivatives can be neglected in the above
equation. Together, this allows us to simplify the field equation for
fR to (e.g. Oyaizu 2008, also see Appendix A)

∇2fR = 1
3

(δR − 8πGδρ) , (3)

where δR and δρ denote the perturbations in the scalar curvature
and matter density, respectively. Considering equation (2) in the
Newtonian limit, a modified Poisson equation for the gravitational
potential is obtained (Hu & Sawicki 2007, also see Appendix A):

∇2$ = 16πG

3
δρ − 1

6
δR. (4)

In order to follow cosmic structure formation in f (R) models, our
code needs to solve the two partial differential equations (3) and
(4). The former equation is particularly challenging to solve due to
its non-linearity.

However let us first consider our choice of f (R). Since GR is well
tested in the Solar system, modified gravity models should show the
same behaviour as GR in high-density regions, or more precisely in
our local environment within the Milky Way. This is achieved in a
class of models which exhibit a chameleon mechanism, such as the
model proposed by Hu & Sawicki (2007),

f (R) = −m2 c1
(

R
m2

)n

c2
(

R
m2

)n + 1
, (5)

where m2 ≡ H 2
0 %m. For a suitable choice of the parameters c1,

c2 and n, the chameleon mechanism screens f (R) effects in high-
density regions. By also requiring

c1

c2
= 6

%&

%m
and c2

(
R

m2

)n

≫ 1, (6)

an expansion history of the universe is obtained which closely mim-
ics the one inferred with a &CDM cosmological model (see e.g. Hu
& Sawicki 2007). In this scenario, the derivative of f (R) is given
by

fR = −n
c1

(
R
m2

)n−1

[
c2

(
R
m2

)n + 1
]2 ≈ −n

c1

c2
2

(
m2

R

)n+1

, (7)

where the second equality holds in the assumed limit c2
(

R
m2

)n ≫ 1.
For a more convenient characterization of a specific f (R) model, the
parameter set c1 and c2 can be replaced by the background value
of fR at z = 0, f̄ R0, as follows: the background curvature of a
Friedmann–Robertson–Walker universe is given by

R̄ = 12H 2 + 6
dH

d ln a
H, (8)

which translates into

R̄ = 3m2
[
a−3 + 4

%&

%m

]
(9)

for a flat &CDM expansion history. Plugging this equation for
a = 1 into equation (7) and additionally demanding that the first
equality in equation (6) is satisfied constrains the parameters c1 and
c2 completely for given values of %&, %m, H0, f̄ R0 and n. Hence,
f̄ R0 and n can be used instead of c1, c2 and n to completely specify
the model. In the following sections, we will therefore describe the
considered f (R) models by their value of f̄ R0. n is fixed to 1 in the
simulations presented in this work.

3 TH E S I M U L AT I O N S

Our simulations were carried out with the modified gravity sim-
ulation code MG-GADGET (Puchwein et al. 2013). The code is an
extension and modification of P-GADGET3, which is itself based on
GADGET-2 (Springel 2005). An advantage of using P-GADGET3 as a
basis for the modified gravity code is that numerical models for
a large number of physical processes such as hydrodynamics, gas
cooling, star formation and associated feedback processes are al-
ready implemented in this code. It is, hence, possible to follow
such baryonic processes and modified gravity at the same time. Es-
pecially the possibility to account for hydrodynamics in modified
gravity simulations is essential for the analysis carried out in this
work.

Here, we provide only a very brief overview of how the MG-
GADGET code solves the partial differential equations that arise in
f (R) gravity. A detailed description of the code functionality and the
algorithms that are employed is given in Puchwein et al. (2013). To
solve the equation for fR, i.e. equation (3), the code uses an iterative
multigrid-accelerated Newton–Gauss–Seidel relaxation scheme on
an adaptively refined mesh. This method is computationally effi-
cient, well suited for very non-linear equations and provides high
spatial resolution in high-density regions, like in collapsed haloes.
Note however, that instead of solving directly for fR, the code it-
eratively computes u ≡ ln(fR/f̄ R(a)). This ensures that fR cannot
attain unphysical positive values due to the finite step size of the
iterative solver, which makes the code numerically more stable (see
also Oyaizu 2008).
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2 F(R)-GRAVITY

S =
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R+ f(R)
16⇡G
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, (1)

The field equation for fR = df(R)
dR is then given by

r2fR =
1
3c2

(�R� 8⇡G�⇢) , (2)

where ... restore factors of c here ... The gravitational po-
tential � satisfies

r2� =
16⇡G
3

�⇢� 1
6
�R, (3)

In the model described by Hu & Sawicki (2007), f(R) is
given by

f(R) = �m2 c1
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R
m2

�n
+ 1

, (4)

where m2 ⌘ H2
0⌦m. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
is close to ⇤CDM we reqiure c2(R/m2)n ⌧ 1. f(R) is then
given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term �m2c1/c2 equal to �2⇤, where ⇤ is the
desired cosmological constant, then closely recovers the ex-
pansion history of ⇤CDM. This can be rephrased in a rela-
tion between the parameters c1 and c2, namely

c1
c2

= 6
⌦⇤

⌦m
, (5)

where ⌦⇤ and ⌦m are the vacuum and mean matter densities
in units of the critical density of the Universe.
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⇥
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+ 1
⇤2 , (6)

If c2(R/m2)n ⌧ 1, this reduces to

fR ⇡ �n
c1
c22

✓
m2

R

◆n+1

. (7)

In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
dH
d ln a

H, (8)

where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
ten as

R̄(a) = 3m2

✓
a�3 + 4

⌦⇤

⌦m

◆
. (9)

Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0

✓
R̄0

R̄(a)

◆2

= f̄R0
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, (10)
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
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cumputation in our cosmological simulations.
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yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0
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R̄0
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= f̄R0

 
1 + 4 ⌦⇤

⌦m

a�3 + 4 ⌦⇤
⌦m

!2

, (10)
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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The field equation for fR = df(R)
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In the model described by Hu & Sawicki (2007), f(R) is
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, (4)

where m2 ≡ H2
0Ωm. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
is close to ΛCDM we reqiure c2(R/m2)n ≫ 1. f(R) is then
given by f(R) = −m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term −m2c1/c2 equal to −2Λ, where Λ is the
desired cosmological constant, then closely recovers the ex-
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In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
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where a is the scale factor and H ≡ ȧ/a is the Hubble func-
tion. For a flat ΛCDM expansion history this can be rewrit-
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Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and δR are
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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using the techniques of [62]. The principal feature of the
linear evolution is that, once the wavelength of the pertur-
bation becomes smaller than the Compton wavelength in
the background

 

k
aH

B1=2 > 1; (31)

strong deviations from the GR growth rate appear. In
particular, the space-space ! and time-time " pieces of
the metric fluctuations in the Newtonian (longitudinal)
gauge evolve to a ratio

 !!

"
" ! # 1

2
; (32)

implying the presence of order-unity deviations from GR.
The consequence of this relative enhancement of the

gravitational potential " is an increase in the growth rate
of linear density perturbations on scales below the
Compton wavelength. If the Compton wavelength is longer
than the nonlinear scale of a few Mpc, this transition leads

to a strong and potentially observable deviation in the
matter power spectrum. Even percent-level deviations in
the power spectrum are, in principle, detectable with future
weak-lensing surveys. If the Compton wavelength ap-
proaches the horizon, it can substantially alter the CMB
power spectrum as well [62].

In Fig. 4, we illustrate this effect for n # 1 and n # 4
models. Deviations occur in the linear regime down to a
field amplitude of jfRj$ 10!7. For these small-field am-
plitudes, the expansion history and hence distance mea-
sures of the acceleration are indistinguishable from a
cosmological constant with any conceivable observational
probe. Nonetheless, linear structure can provide a precision
test of gravity that, we shall see, rivals that of local tests in
a substantially different curvature regime.

FIG. 4. Fractional change in the matter power spectrum P%k&
relative to #CDM for a series of the cosmological field ampli-
tude today, fR0, for n # 1, 4 models. For scales that are below
the cosmological Compton wavelength during the acceleration
epoch k * %aH&B!1=2 perturbation dynamics transition to the
low-curvature regime where ! # 1=2 and density growth is
enhanced. This transition occurs in the linear regime out to field
amplitudes of jfR0j$ 10!6–10!7.

FIG. 3. Evolution of the effective equation of state for n # 1, 4
for several values of the cosmological field amplitude today, fR0.
The effective equation of state crosses the phantom divide
weff # !1 at a redshift that decreases with increasing n leading
potentially to a relatively unique observational signature of these
models.
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2012a), halo velocity dispersions (Schmidt 2010; Lam et al. 2012;
Lombriser et al. 2012b), redshift-space distortions (Jennings et al.
2012) and the integrated Sachs–Wolfe effect (Cai et al. 2014).

Our modified gravity simulation code, MG-GADGET (Puchwein
et al. 2013), allows us to follow baryonic physics and modified
gravity at the same time. This offers the opportunity to investigate
the intracluster medium (ICM) temperatures, the hydrostatic mass
bias, the X-ray luminosities and the thermal Sunyaev–Zeldovich
(SZ) signals of galaxy cluster and groups. Here, we assess how f (R)
gravity affects these quantities, as well as cluster velocity disper-
sions, subhalo abundances and dynamical mass estimates.

In Section 2, we briefly summarize the main properties of the
f (R) gravity model which we consider. An overview of how our
modified gravity simulation code works and what runs have been
performed with it is provided in Section 3. Our results are presented
in Section 4. We summarize our findings and draw our conclusions
in Section 5.

2 f (R) G RAVITY

f (R) gravity models generalize Einstein’s general relativity by
adding a function f (R) to the Ricci scalar R in the gravitational
part of the action. The action is then given by

S =
∫

d4x
√

−g

[
R + f (R)

16πG
+ Lm

]
, (1)

where g is the determinant of the metric, G is the gravitational
constant and Lm is the Lagrangian density of matter. Demanding
that the variation of this action with respect to the metric vanishes
leads to the modified Einstein equations (Buchdahl 1970):

Gµν + fRRµν −
(

f

2
− !fR

)
gµν − ∇µ∇νfR = 8πGTµν, (2)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor and fR ≡ df/dR.
Models which are compatible with observational constraints require
|fR| ≪ 1. On scales much smaller than the horizon, the quasi-static
approximation is valid (Oyaizu 2008; Noller, von Braun-Bates &
Ferreira 2014) so that time derivatives can be neglected in the above
equation. Together, this allows us to simplify the field equation for
fR to (e.g. Oyaizu 2008, also see Appendix A)

∇2fR = 1
3

(δR − 8πGδρ) , (3)

where δR and δρ denote the perturbations in the scalar curvature
and matter density, respectively. Considering equation (2) in the
Newtonian limit, a modified Poisson equation for the gravitational
potential is obtained (Hu & Sawicki 2007, also see Appendix A):

∇2$ = 16πG

3
δρ − 1

6
δR. (4)

In order to follow cosmic structure formation in f (R) models, our
code needs to solve the two partial differential equations (3) and
(4). The former equation is particularly challenging to solve due to
its non-linearity.

However let us first consider our choice of f (R). Since GR is well
tested in the Solar system, modified gravity models should show the
same behaviour as GR in high-density regions, or more precisely in
our local environment within the Milky Way. This is achieved in a
class of models which exhibit a chameleon mechanism, such as the
model proposed by Hu & Sawicki (2007),

f (R) = −m2 c1
(

R
m2

)n

c2
(

R
m2

)n + 1
, (5)

where m2 ≡ H 2
0 %m. For a suitable choice of the parameters c1,

c2 and n, the chameleon mechanism screens f (R) effects in high-
density regions. By also requiring

c1

c2
= 6

%&

%m
and c2

(
R

m2

)n

≫ 1, (6)

an expansion history of the universe is obtained which closely mim-
ics the one inferred with a &CDM cosmological model (see e.g. Hu
& Sawicki 2007). In this scenario, the derivative of f (R) is given
by

fR = −n
c1

(
R
m2

)n−1

[
c2

(
R
m2

)n + 1
]2 ≈ −n

c1

c2
2

(
m2

R

)n+1

, (7)

where the second equality holds in the assumed limit c2
(

R
m2

)n ≫ 1.
For a more convenient characterization of a specific f (R) model, the
parameter set c1 and c2 can be replaced by the background value
of fR at z = 0, f̄ R0, as follows: the background curvature of a
Friedmann–Robertson–Walker universe is given by

R̄ = 12H 2 + 6
dH

d ln a
H, (8)

which translates into

R̄ = 3m2
[
a−3 + 4

%&

%m

]
(9)

for a flat &CDM expansion history. Plugging this equation for
a = 1 into equation (7) and additionally demanding that the first
equality in equation (6) is satisfied constrains the parameters c1 and
c2 completely for given values of %&, %m, H0, f̄ R0 and n. Hence,
f̄ R0 and n can be used instead of c1, c2 and n to completely specify
the model. In the following sections, we will therefore describe the
considered f (R) models by their value of f̄ R0. n is fixed to 1 in the
simulations presented in this work.

3 TH E S I M U L AT I O N S

Our simulations were carried out with the modified gravity sim-
ulation code MG-GADGET (Puchwein et al. 2013). The code is an
extension and modification of P-GADGET3, which is itself based on
GADGET-2 (Springel 2005). An advantage of using P-GADGET3 as a
basis for the modified gravity code is that numerical models for
a large number of physical processes such as hydrodynamics, gas
cooling, star formation and associated feedback processes are al-
ready implemented in this code. It is, hence, possible to follow
such baryonic processes and modified gravity at the same time. Es-
pecially the possibility to account for hydrodynamics in modified
gravity simulations is essential for the analysis carried out in this
work.

Here, we provide only a very brief overview of how the MG-
GADGET code solves the partial differential equations that arise in
f (R) gravity. A detailed description of the code functionality and the
algorithms that are employed is given in Puchwein et al. (2013). To
solve the equation for fR, i.e. equation (3), the code uses an iterative
multigrid-accelerated Newton–Gauss–Seidel relaxation scheme on
an adaptively refined mesh. This method is computationally effi-
cient, well suited for very non-linear equations and provides high
spatial resolution in high-density regions, like in collapsed haloes.
Note however, that instead of solving directly for fR, the code it-
eratively computes u ≡ ln(fR/f̄ R(a)). This ensures that fR cannot
attain unphysical positive values due to the finite step size of the
iterative solver, which makes the code numerically more stable (see
also Oyaizu 2008).
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2 F(R)-GRAVITY

S =
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, (1)

The field equation for fR = df(R)
dR is then given by

r2fR =
1
3c2

(�R� 8⇡G�⇢) , (2)

where ... restore factors of c here ... The gravitational po-
tential � satisfies

r2� =
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In the model described by Hu & Sawicki (2007), f(R) is
given by
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R
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�n
+ 1

, (4)

where m2 ⌘ H2
0⌦m. n, c1 and c2 are free parameters that

define the model. To obtain a cosmic expansion history that
is close to ⇤CDM we reqiure c2(R/m2)n ⌧ 1. f(R) is then
given by f(R) = �m2c1/c2 + O((m2/R)n). Setting the ze-
roth order term �m2c1/c2 equal to �2⇤, where ⇤ is the
desired cosmological constant, then closely recovers the ex-
pansion history of ⇤CDM. This can be rephrased in a rela-
tion between the parameters c1 and c2, namely

c1
c2

= 6
⌦⇤

⌦m
, (5)

where ⌦⇤ and ⌦m are the vacuum and mean matter densities
in units of the critical density of the Universe.

fR = �n
c1
�

R
m2

�n�1

⇥
c2
�

R
m2

�n
+ 1
⇤2 , (6)

If c2(R/m2)n ⌧ 1, this reduces to

fR ⇡ �n
c1
c22

✓
m2

R

◆n+1

. (7)

In a Friedmann-Robertson-Walker universe the scalar cur-
vature is given by

R̄ = 12H2 + 6
dH
d ln a

H, (8)

where a is the scale factor and H ⌘ ȧ/a is the Hubble func-
tion. For a flat ⇤CDM expansion history this can be rewrit-
ten as

R̄(a) = 3m2

✓
a�3 + 4

⌦⇤

⌦m

◆
. (9)

Evaluating this at a = 1 and plugging the result into Eq. (7)
yields an equation for f̄R0, the background value of fR at
z = 0. Fixing the value f̄R0 consequently results in a relation
between c1 and c2. Together with Eq. (5), this completely
determines both c1 and c2. It is, hence, possible to paramere-
tise f(R)-models of this tpye using n and f̄R0 rather than
n, c1 and c2. We adopt this convention throughout the re-
mainder of this paper. Futhermore, all the simulations we
present here assume n = 1. In this case, f̄R(z) and �R are
given by

f̄R(a) = f̄R0

✓
R̄0

R̄(a)

◆2

= f̄R0
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, (10)
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Together with Eqns. (2) and (3), this defines the system of
equations that we need to solve numerically for the force
cumputation in our cosmological simulations.

3 THE SIMULATION CODE

Our new fully parallel cosmological simulation code for mod-
ified gravity models Modified Gravity-Gadget or MG-

Gadget is based on the TreePM-SPH simulation code P-

Gadget 3, an updated and significantly extended version of
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between c1 and c2. Together with Eq. (5), this completely
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cumputation in our cosmological simulations.
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The MG-Gadget code

• wrote the Modified Gravity-Gadget (or MG-Gadget) 
simulation code (EP, Baldi, Springel 2013) 

• based on the P-Gadget3 code 
• the code is 

‣ has adaptive resolution (multigrid accelerated 
relaxation on adaptive mesh) 

‣ MPI parallel to allow large runs 

‣ allows including baryonic physics at the same time



A first modified gravity code comparison
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Figure 2. Comparison of the matter power spectrum results of the ecosmog, mg-gadget and isis codes for the ⇤CDM (left), F5
(middle) and F6 (right) models, as labelled. When comparing the two ramses-based codes (isis and ecosmog), we show the ecosmog

results from simulations run with CIC and with TSC interpolation schemes, as labelled.

z = 1. The lower panels of Fig. 4 show the relative differ-
ence to ⇤CDM measured in the simulations of the r

c

H0 = 5
(left) and r

c

H0 = 1 (right) DGP models. We recover the
known result that, in the DGP model, the amplitude of
the power spectrum is boosted by a scale-independent fac-
tor on scales k . 0.1hMpc�1. On mildly nonlinear scales,
0.1hMpc�1 . k . 1hMpc�1, the boost in the power spec-
trum is stronger than on linear scales due to mode-coupling.
However, on nonlinear scales, k & 1hMpc�1 (halo size
scales), the suppression effects of the Vainshtein screening
mechanism are dominant, which effectively reduces the im-
pact of the fifth force on the power spectrum (e.g., Schmidt
et al. 2010).

Fig. 4 shows that the three codes agree very well (up
to 1%) on scales k . 1hMpc�1. For k & 1hMpc�1, how-
ever, the power in the dgpm simulations is higher than in
ecosmog. This is due to the different interpolation schemes
used in the codes. In particular, in dgpm, the CIC inter-
polation yields a density field with higher peaks than the
density field in ecosmog, which is smoother because of the
use of the TSC scheme. This is similar to the ecosmog and
isis results in the left panel of Fig. 2 (blue and pink lines).
The lower panels of Fig. 4 also show the ecosmog result
with refinements (blue). For the r

c

H0 = 5 model the three
codes are, overall, in good agreement for all redshifts and
scales shown (< 1% for k . 5hMpc�1). However, the modi-
fications to gravity in the r

c

H0 = 5 model are weaker than
in the r

c

H0 = 1 case, and as a result, it is easier to inter-
pret the code results for the r

c

H0 = 1 model. For this case,
the three codes agree very well for k . 1hMpc�1. Note also
that the ecosmog results with refinements agree with its re-
sults for fixed grid on these large scales. For k & 1hMpc�1,
dgpm is also in good agreement with the results from ecos-

mog for fixed grid. Recall that the two codes solve the DGP
scalar field equation in substantially different ways (cf. Sec-
tion 4.2.2), so this is a nontrivial test. On these small scales,
the agreement of the fixed grid codes with the ecosmog
code with refinements gets worse, but this is expected due
to the gain in resolution in the latter. It is also interesting to
note that, at z = 0 and for k & 4hMpc�1, the enhancement
in the power is smaller in the ecosmog simulations with
refinements compared to the fixed grid cases. The explana-
tion here is that the AMR nature of the grid allows it to
resolve better the higher density peaks that exist on these
smaller scales. This results in the code capturing better the
suppression effects of the screening, and hence, the boost in
the power relative to ⇤CDM becomes less pronounced. This
is more pronounced at z = 0 compared to z = 1 because
at earlier times the density field is less evolved, hence the
screening efficiency is also weaker.

5.2.4 Symmetron

The left panel of Fig. 5 shows the power spectrum results
for the Symmetron model, which were obtained with the isis
and isis-nonstatic code, both run without refinements. The
figure shows that the impact of the time-derivative terms
in the equation of the Symmetron model, equation (51), is
below the 0.5% level for all times and scales shown. More-
over, there seems to be no trend with scale. Hence, we can
conclude that, in what concerns measurements of the non-
linear matter power spectrum from N-body simulations of
the Symmetron model, the use of the quasi-static limit has
virtually no impact on the results.

This result is not unexpected since the calculation of
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Figure 3. Fractional difference of the matter power spectrum w.r.t. ⇤CDM from the simulations of the F5 (left) and F6 (right) models per-
formed with the ecosmog (TSC), mg-gadget and isis codes, as labelled. In the lower panel insets, ✏ = (P/P⇤CDM)code / (P/P⇤CDM)ref�
1, with mg-gadget being the reference code. At z = 0, the codes are all accurate to within 1% on all scales shown.

the matter power spectrum is dominated by high-density re-
gions (haloes, if one thinks about it in the framework of the
halo model), where the time derivatives are indeed expected
to be negligible relative to the spatial ones. Consequently,
it may be of interest to investigate whether the quasi-static
assumption remains also a good approximation for observ-
ables which are more sensitive to lower density regions. Such
an investigation is not explored in this study.

5.3 Velocity divergence spectra

We have measured the power spectrum of the velocity di-
vergence field defined as P

✓✓

(k) ⌘ h✓2
k

i, where ✓(x) =
H�1

0 r · v(x), with v being the peculiar velocity field. In the
linear regime, ✓ is related to the matter density contrast as
✓ / ��f , where f = dln�/dlna is the linear growth rate. We
show only results for the divergence of the velocity field, but
note that on small scales, where nonlinear processes become
important, the vorticity (rotational component of v(x)) is
nonnegligible and hence the whole velocity field cannot be
described solely by ✓.

To measure P
✓✓

(k), we constructed a volume-weighted
velocity field (Bernardeau & van de Weygaert 1996) with the

DTFE method implemented in the publicly available code
of Cautun & van de Weygaert (2011). We refer the reader to
Li et al. (2013c) for more details about our method to com-
pute the velocity divergence field from the N-body particle
positions and velocities. Next, we discuss our results for the
f(R) and DGP simulations. We have also measured P

✓✓

for
the Symmetron simulations of the isis and isis-nonstatic
codes, but since there are virtually no differences between
the full and quasi-static results, we refrain from showing
them.

5.3.1 f(R)

Figure 6 shows the fractional difference of the velocity diver-
gence power spectrum w.r.t. ⇤CDM in the F5 (left) and F6
(right) models. The enhancement in the amplitude of P

✓✓

in
f(R) relative to ⇤CDM is noticeably larger than that seen
for the matter power spectrum (see also Jennings et al. 2012;
Li et al. 2013c,b; Hellwing et al. 2014). In particular, for the
F5 (F6) model at z = 0 and k ⇡ 3hMpc�1, the amplitude
of P

✓✓

is enhanced by ⇡ 50% (⇡ 20%), while the boost in
the amplitude of P (k) is kept at 20�25% (⇡ 5%) only. The
velocity field is more sensitive than the density field to the
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Figure 9. Fractional difference of the halo mass function w.r.t. ⇤CDM from the simulations of the F5 (left) and F6 (right) models per-
formed with the ecosmog (TSC), mg-gadget and isis codes, as labelled. In the lower panel insets, ✏ = (n/n⇤CDM)code / (n/n⇤CDM)ref�
1, with mg-gadget being the reference code.

(there are differences of order 5%, which we note are likely
to come from differences in the base codes.)

At large radii (r/rvir & 1), mg-gadget overpredicts
the amplitude of the Newtonian force compared to ecos-
mog and isis. Here, we stress that what we average in a
given halo mass bin is the force modulus and not any di-
rectional component of the force (e.g. radial). This is why
the force profiles do not keep decaying torwards large radii
but instead level off due to the matter distribution that sur-
rounds the haloes5. This can explain the mismatch in the
Newtonian force at large radii because the matter distribu-
tion around haloes in gadget and ramses simulations is
not exactly the same, and the base code algorithms that
compute the Newtonian force are also different. What is im-
portant to retain here is that, at these large radii, the three
codes agree very well in their fifth force predictions, which
are the corrections to normal gravity we are interested in
testing in this paper.

5 If one would average the radial component of the force for a
large number of haloes, then the contribution from the surround-
ing structure would cancel out.

5.5.2 DGP

Figures 14 and 15 show the same as Figs. 12 and 13, but for
the DGP simulations performed with the dgpm and ecos-
mog (with and without refinements) codes. The absolute
value of the scalar field in the DGP model is irrelevant as
the equations of the model contain only its derivatives. For
this reason, we do not show the scalar field profiles and pre-
fer to plot the gradient of the field (which, up to a factor of
1/2, is the fifth force as seen in equation 15).

The Newtonian force profiles of the two codes are in very
good agreement when ecosmog is run without refinements
(like dgpm). There are marked differences in the solutions of
the two codes for the size of the fifth force in the inner regions
of the haloes, but since the amplitude of the fifth force is
small there anyway, the difference does not translate into the
density and velocity dispersion profiles (as seen in Fig. 13).
However, when analysing these results, it is important to
bear in mind that the grid size of the nonrefined simulations
(�r ' 0.5h�1Mpc) is half of the typical halo size scales of
⇡ 1h�1Mpc. As a result, one should not attempt to draw any
physically meaningful conclusions from the results depicted
by the red and green lines. We showed these lines simply to
illustrate that the dgpm and ecosmog (nonrefined) codes
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Halo gas properties in chameleon-f(R) gravity
836 C. Arnold, E. Puchwein and V. Springel

Figure 2. Approximate theoretical threshold value in the three-dimensional
halo velocity dispersion for the screening of f (R) effects on gravity due to
the chameleon mechanism. In haloes exceeding this threshold, GR gravity
is expected to be restored.

Thus, there is almost no difference in the median curves of the
!CDM and f (R) runs. A small deviation is, however, present at
the low-mass end. This presumably indicates the transition to the
unscreened low-curvature regime. Overall, these results are in good
agreement with the findings of Schmidt (2010).

One can obtain a simple analytic estimate of the velocity dis-
persion threshold above which the chameleon mechanism screens
modified gravity effects. Note that in the low-curvature regime
∇2fR ≈ − 8πG

3c2 δρ ≈ − 2
3c2 ∇2φN, where φN is the Newtonian grav-

itational potential. From this one finds δfR ≈ − 2
3c2 φN in the un-

screened regime. The chameleon effect becomes effective once
strong non-linearities appear. According to equation (12), this hap-
pens when |δfR| approaches |f̄ R|. Hence, chameleon screening is
active for |φN| ! 3c2

2 |f̄ R| (e.g. Hu & Sawicki 2007; Cabré et al.
2012). For the sake of simplicity we ignore for the moment factors
of approximately ∼

√
(4/3) due to modified gravity effects when

translating the Newtonian potential to a three-dimensional halo ve-
locity dispersion σ . Assuming σ3D ≈

√
φN, this results in a thresh-

old value for the onset of chameleon screening of σ3D !
√

3c2

2 f̄ R .
Fig. 2 displays this quantity as a function of redshift for models
with |f̄ R0| = 10−6, 10−5 and 10−4.

For |f̄ R0| = 10−4 and z = 0, the onset of screening is expected
at σ1D = σ3D/

√
3 ≈

√
106.6 km s−1, which is even larger than the

values found in our most massive simulated galaxy clusters. The the-
oretical value for |f̄ R0| = 10−5 at z = 0, i.e. σ1D =

√
105.6 km s−1,

is in good agreement with the position of the transition region in the
simulation. The theoretical value for the onset of screening in the
|f̄ R0| = 10−6 cosmology is σ1D ≈

√
104.6 km s−1, which is com-

patible with the slight increase in the velocity dispersion that we
find for low-mass objects in the corresponding simulation.

Note, however, that the simple derivation presented above ne-
glects the effects of environment. In particular, the Newtonian grav-
itational potential is not only affected by an object’s mass but also by
its surroundings. Thus, even objects with masses below the derived
screening threshold can be screened, if they reside in a high-density
region. This effect could result in increased scatter of the properties

Figure 3. Relation between mass-weighted temperatures and group/cluster
masses within r500crit in the ‘Nonrad’ simulation in a !CDM and a |f̄ R0| =
10−5 cosmology. The solid lines show the median of the binned data, the
dashed line indicates the slope of the self-similar scaling relation T ∝ M2/3.

of low-mass objects in f (R) gravity. Massive galaxy clusters are in
contrast not expected to be strongly affected.

4.2 Temperatures of the intracluster and intragroup medium

As the temperature of the ICM or intragroup medium is closely
related to the halo velocity dispersion, we expect to find a similar
behaviour in the mass–temperature scaling relation. For the ‘Non-
rad’ simulation, this is indeed the case as illustrated in Fig. 3, which
displays the relation between the group/cluster masses and mass-
weighted temperatures, TMW =

∑
Tparticlemparticle/

∑
mparticle within

a radius that encloses a mean density of 500 times the critical den-
sity of the Universe. As theoretically expected, the non-radiative
!CDM relation follows the slope of the self-similar prediction
(Kaiser 1986), i.e. T ∝ M2/3, which is indicated by the dashed line
in the figure.

In f (R) gravity, the M–T relation deviates from the !CDM re-
sult. Like the velocity dispersions, the temperatures are boosted
by about 30–40 per cent with respect to the standard cosmology
at masses below approximately 1013.8 M⊙. This increment is again
comparable to the enhancement of the gravitational forces. At about
1013.8 M⊙ screening as implied by the chameleon mechanism sets
in. This reduces the difference in the !CDM and f (R) relations with
increasing mass until the curves coincide for M500crit ! 1014.5 M⊙.

The masses shown in Figs 1 and 3 were calculated for different
spherical overdensity thresholds, i.e. within different radii. To be
able to directly compare the enhancement of mass-weighted tem-
peratures and halo velocity dispersions in f (R) gravity, Fig. 4 shows
the relative difference in the median curves for both quantities.
Here, all values were calculated within r200crit. The figure visualizes
the theoretically expected effects on both of these quantities. The
curves coincide almost perfectly.

4.3 Mass bias

4.3.1 Dynamical mass estimates

A standard method for inferring the masses of distant galaxy clusters
and groups is to relate the line-of-sight (LOS) velocity dispersion of
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Figure 6. Volume-weighted PDF of gas temperature (left panel) and density (right panel) of the intergalactic medium in simulations
with a standard ΛCDM cosmology and for modified gravity runs with |f̄R0| = 10−4 and 10−5 at redshift z = 2.

As a first application we consider the chameleon-type
f(R)-gravity model introduced by Hu & Sawicki (2007). Be-
fore performing full cosmological runs, we apply the code to
a few simple test problems to assess the accuracy of the mod-
ified gravity solver. For a single point mass, the numerical
results are in very good agreement with the analytic predic-
tion in the radial range in which the latter is valid. The code
also accurately recovers the analytic solution for the scalar
degree of freedom in the case of a 1D density peak. For this
test, we use adaptive refinement. The numerical and ana-
lytic solutions are in excellent agreement both on the base
grid, as well as on the refined grids, thereby demonstrating
that our AMR scheme works well.

We also test the AMR method under more realistic
conditions, i.e. for a cosmological density field. Overall, it
performs very well. For |f̄R0| = 10−5, it yields essentially
the same result as obtained on an extremely fine fixed grid
with a resolution equalling the peak resolution of the adap-
tive mesh. However, this test also reveals fundamental lim-
itations of the accuracy of one-way interface scheme AMR
methods for very nonlinear equations. For the considered
f(R)-gravity model strong nonlinearities occur for small
|f̄R0| values. For |f̄R0| = 10−6, small deviations between the
extremely fine fixed grid and AMR solutions become notice-
able. This discrepancy can, however, be alleviated by using
a higher base grid resolution.

As a next step, we perform full cosmological f(R)-
gravity N-body simulations and compare them to a refer-
ence ΛCDM run. We find scale-dependent enhancements of
the matter power spectrum due to the modifications of grav-
ity which are in very good agreement with results obtained
by Li et al. (2012b). This concordance of different modified-
gravity simulation codes is quite reassuring.

We then confront the effects of baryonic processes, like
AGN feedback, on the total matter power spectrum with
its changes due to modifications of gravity. It turns out
that for those modified gravity models that are not in ten-
sion with observational constraints, both effects have similar
magnitude and happen at similar spatial scales. This clearly

demonstrates that there are significant degeneracies between
modified gravity and uncertainties in the baryonic physics.
We hence require simulations that follow both processes at
the same time to look for observational signatures of modi-
fied gravity that are least affected by such uncertainties.

For the aforementioned comparison, we have analysed
the effects of AGN feedback on the total matter power spec-
trum in cosmological hydrodynamical ΛCDM simulations by
Puchwein & Springel (2013). Our results confirm the finding
of van Daalen et al. (2011) that AGN feedback significantly
suppresses the total matter power spectrum on scales up to
several Mpc. Understanding and accounting for this will be
of utmost importance for fully exploiting upcoming surveys
like Euclid or LSST that aim to probe cosmology by weak
lensing (e.g. Semboloni et al. 2011). Given these results, it
seems likely that the smallest spatial scale that can be used
for such studies will ultimately be set by our knowledge or
lack of knowledge of baryonic processes like feedback from
AGN.

Finally, as a step towards simulations that account for
modified gravity and complex baryonic physics at the same
time, we perform the first – to our knowledge – modified
gravity cosmological hydrodynamical simulations. Some of
our runs also account for radiative cooling in the presence
of an external UV background. In the latter runs, we find
that modified gravity changes the density and temperature
PDFs of the intergalactic medium. It will be interesting to
explore in a future work whether this results in an observable
signature of modified gravity in the Lyman-α forest.
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The Lyman-α forest in chameleon-f(R)
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Figure 1. Left-hand panel: PDF of the transmitted flux fraction for different redshifts for !CDM and |f̄R0| = 10−5, using the results of the large simulation
boxes. The dots with error bars show the data of Kim et al. (2007). For z = 3, the observational results of Calura et al. (2012) are shown in addition (we plot
the ‘no metals, no LLS’ values of this work here). Right-hand panel: relative difference of the PDFs on the left-hand side. The shaded regions show the 1σ

relative errors of the observational results of Kim et al. (2007). The mean transmission is tuned to the values of this work in both panels.

are compared to the observational results of McDonald et al. (2006),
with the grey shaded area in the relative difference plot indicating
their quoted errors.

As for the flux PDF, the discrepancy between simulations and
observations at redshift z = 3 is quite large, in particular much
larger than the errors given in McDonald et al. (2006). This might
have its origin in systematic uncertainties which are not considered
by the error bars. Again, the difference between the two gravitational
models is tiny, compared to the difference between observational
data and the results from the simulations. Because the difference
to GR is again smaller than or comparable to the error bars of the
shown observations, we need to conclude that the Lyman α flux
power-spectrum is only mildly affected by f(R)-gravity.

This is also particularly evident in the relative difference plots
at the right-hand side. The difference in the flux power-spectrum
between |f̄R0| = 10−5 and GR is about 5 per cent at maximum,
considering redshifts z = 2, 2.5 and 3. Normalizing the results of
McDonald et al. (2006) to our !CDM outcome, it is obvious that
the relative difference between the f(R) simulation results and the
fiducial model is consistent with the relative errors quoted for the
individual k bins. The overall deviation over many bins and redshifts
may be statistically significant. However, systematic effects would

need to be better understood to obtain interesting constrains on f̄R0

based on such observations.
To test if it is at all possible to constrain f(R)-gravity using the

Lyman α forest, we also run a set of simulations with smaller box
size at equal mass and spatial resolution, for |f̄R0| = 10−4, 10−5

and GR. The power spectra and flux PDFs at redshift z = 3 are
shown in Fig. 3. For both power spectra and the PDFs, the results
for GR and |f̄R0| = 10−5, as well as their relative differences, are
compatible with the values from the bigger simulation box shown in
Figs 1 and 2. One can therefore conclude that the smaller box runs
are sufficient for an analysis over the shown range of values. In the
|f̄R0| = 10−4 simulations, the flux power spectrum does not fit the
observed values of McDonald et al. (2006) despite tuning the mean
transmission. As the absolute value of the Lyman α power spectrum
is not known with great accuracy, one should not overestimate the,
compared to the over gravitational models, smaller difference of
the |f̄R0| = 10−4 curve to the observations. Again, normalizing the
GR results to the observations, one can compare the observational
errors to the differences between f(R) and a !CDM universe. At
intermediate scales the difference between |f̄R0| = 10−4 and GR
is larger than for |f̄R0| = 10−5. Nevertheless, it does not exceed
the 2σ relative error of the observations for individual k bins. Given
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The Lyman-α forest in chameleon-f(R)
The Lyman α forest in f (R) modified gravity 2279

Figure 2. Left-hand panel: flux power spectra for f(R)-gravity and "CDM obtained from the 60 h−1 Mpc simulation boxes at different redshifts. The dots
with error bars show the results of McDonald et al. (2006). Right-hand panel: relative difference in the flux power spectra shown on the left-hand side. The
shaded area represents the relative errors of the McDonald et al. (2006) results at z = 3. The mean transmission is tuned to the values of Kim et al. (2007) for
both panels.

that |f̄R0| = 10−4 appears already clearly ruled out by other methods
(Schmidt et al. 2009; Smith 2009; Lombriser et al. 2012a,b; Dossett,
Hu & Parkinson 2014), it does not seem that current Lyman α data
can add much new information here.

Fig. 3 also shows the PDF of the transmitted flux for the three
different gravity models. As for the power spectrum, the |f̄R0| =
10−4 values do not fit the data much better than the other models
at z = 3. Comparing relative errors to the difference between the
models, we see that the difference between |f̄R0| = 10−4 and GR
lies within the 1σ -error region for almost all values. Only between
a transmitted flux fraction of 0.6 and 0.9 the difference is larger than
1σ and reaches about 2σ at maximum. The flux PDF does therefore
also not seem to be very competitive with current observational data
compared to other methods to constrain f̄R0.

In comparison to other uncertainties in the cosmological model,
the impact of f(R)-gravity on Lyman α flux power spectra or PDFs
is fairly small, even if one considers quite extreme and already
excluded values for |f̄R0|.

Fig. 4 illustrates how small the modified gravity effect on the
Lyman α forest is. It displays the transmitted flux fraction along
an arbitrarily selected LOS for f(R) and "CDM as a function of
distance along this line. The positions of the absorption lines are

the same for both models, as identical initial conditions have been
used in both simulations. While there appear slight differences in
the transmitted flux fractions for the individual absorption lines, no
general pattern can be identified from a visual inspection.

Taking a more systematic approach, we used the code AUTOVP

(Davé et al. 1997) to fit Voigt-profiles to the absorption lines of
the synthetic spectra. The PDF of the linewidth of the fitted Voigt-
profiles is shown in the upper panel of Fig. 5 for all lines with
a neutral hydrogen column density NH I > 1013 cm−2 at redshift
z = 2. As the lines almost perfectly overlap each other, it is perhaps
not surprising that there is no significant difference in the linewidth
distributions between f(R)-gravity and a "CDM universe. The lower
panel of the figure displays the normalized column density PDF of
the absorption lines. As for the linewidth, the difference between
the curves for |f̄R0| = 10−5 and the "CDM model is negligible.

The absolute values of the statistical Lyman α measures depend
on the observational value the mean transmitted flux is tuned to. To
justify our previous analysis, we briefly show that the relative dif-
ferences do not depend strongly on the actual value that is adopted.
Fig. 6 shows the relative difference in flux PDF and power spec-
trum between |f̄R| = 10−5 and GR. Each line in the plot is tuned
to a different mean τ , representing the observational data of Becker
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Summary & Conclusions

• good agreement between different modified gravity codes 

• degeneracies between modified gravity effects and 
uncertainties in the baryonic physics (e.g. AGN feedback) 

➡ simulations that include both can help to find least affected 
signatures & give better predictions for observational tracers 

• first modified gravity non-radiative and radiative 
hydrodynamical simulations 

• modified gravity effects in the Lyman-α forest are small 

➡ challenging to constrain modifications of gravity with it


