

Simulating cosmic structure formation in modified gravity models

Ewald Puchwein IoA / KICC, Cambridge

collaborators: Christian Arnold, Marco Baldi, Volker Springel

code comparison project collaborators: Hans A. Winther, Fabian Schmidt, Alexandre Barreira et al.

Garching, July 2015

Modified gravity models - Motivation

- need to drive accelerated expansion (large scales / low densities)
 vacuum energy?
 dynamical dark energy?
 modified gravity?
- for modified gravity:
 - need to satisfy solar system constraints (small scales / dense environments)
- some freedom to modify gravity on intermediate galaxy, cluster, LSS scales (GR not that well tested there)

Which model? Let's go for f(R)-gravity first.

Einstein-Hilbert action replaced by

$$S = \int d^4x \sqrt{-g} \left(\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right)$$

varying with respect to the metric yields

$$G_{\mu\nu} + f_R R_{\mu\nu} - \left(\frac{f}{2} - \Box f_R\right) g_{\mu\nu} - \nabla_\mu \nabla_\nu f_R = 8\pi G T_{\mu\nu} \qquad \text{Einstein}$$
equation

with $f_R \equiv \mathrm{d}f/\mathrm{d}R$ scalar degree of freedom

modified Friedmann equations

f(R)-gravity

 in the quasi-static limit perturbations in a FRW universe satisfy

$$\nabla^2 f_R = \frac{1}{3c^2} \left(\delta R - 8\pi G \delta \rho\right)$$

the gravitational potential is given by

$$\nabla^2 \phi = \frac{16\pi G}{3} \delta \rho - \frac{1}{6} \delta R$$

Chameleon f(R)-gravity

$$\nabla^2 f_R = \frac{1}{3c^2} \left(\delta R - 8\pi G \delta \rho \right) \quad \nabla^2 \phi = \frac{16\pi G}{3} \delta \rho - \frac{1}{6} \delta R$$

 $\delta R \approx 8\pi G \delta \rho \quad \Longrightarrow \quad \nabla^2 \phi \approx 4\pi G \delta \rho$

High curvature regime

standard GR restored

Low curvature regime

 $\delta R \ll 8\pi G \delta \rho \quad => \quad \nabla^2 \phi \approx 16/3\pi G \delta \rho \quad \text{enhanced}$ by 4/3

need f(R) for which solar system lives in high curvature regime

• f(R) with Chameleon mechanism

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1}$$

a flat LCDM expansion history is reproduced if

$$\frac{c_1}{c_2} = 6 \frac{\Omega_{\Lambda}}{\Omega_m} \qquad m^2 \equiv H_0^2 \Omega_m$$

• typically $c_2(R/m^2)^n \gg 1$

$$\rightarrow f_R \approx -n \frac{c_1}{c_2^2} \left(\frac{m^2}{R}\right)^{n+1}$$

• f(R) with Chameleon mechanism

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1}$$

a flat LCDM expansion history is reproduced if

$$\frac{c_1}{c_2} = 6 \frac{\Omega_{\Lambda}}{\Omega_m} \qquad m^2 \equiv H_0^2 \Omega_m$$

• typically $c_2(R/m^2)^n \gg 1$

$$\rightarrow f_R \approx -n \frac{c_1}{c_2^2} \left(\frac{m^2}{R}\right)^{n+1}$$

as a first application of our code, we study the case n=1

$$\bar{f}_R(a) = \bar{f}_{R0} \left(\frac{\bar{R}_0}{\bar{R}(a)}\right)^2 \qquad \delta R = \bar{R}(a) \left(\sqrt{\frac{\bar{f}_R(a)}{f_R}} - 1\right)$$

as a first application of our code, we study the case n=1

$$\bar{f}_R(a) = \bar{f}_{R0} \left(\frac{\bar{R}_0}{\bar{R}(a)}\right)^2 \qquad \delta R = \bar{R}(a) \left(\sqrt{\frac{\bar{f}_R(a)}{f_R}} - 1\right)$$

$$\nabla^2 f_R = \frac{1}{3c^2} \begin{bmatrix} \bar{R}(a) \left(\sqrt{\frac{\bar{f}_R(a)}{f_R}} - 1 \right) - 8\pi G \delta \rho \end{bmatrix}$$
 needs to be solved numerically

The MG-Gadget code

- wrote the Modified Gravity-Gadget (or MG-Gadget) simulation code (EP, Baldi, Springel 2013)
- based on the P-Gadget3 code
- the code is
 - has adaptive resolution (multigrid accelerated relaxation on adaptive mesh)
 - MPI parallel to allow large runs
 - allows including baryonic physics at the same time

A first modified gravity code comparison

Winther et al. 2015

A first modified gravity code comparison

A first modified gravity code comparison

the modified gravity effect on the halo mass function

Winther et al. 2015

How modified gravity changes the matter density field

How modified gravity changes the matter density field

Halo gas properties in chameleon-f(R) gravity

Arnold, EP, Springel 2014

f(R) hydro runs

modified gravity effects on the intergalactic medium in radiative runs

-> visible in the Lyman-α forest?

EP, Baldi, Springel 2013

The Lyman-α forest in chameleon-f(R)

The Lyman-α forest in chameleon-f(R)

Summary & Conclusions

- good agreement between different modified gravity codes
- degeneracies between modified gravity effects and uncertainties in the baryonic physics (e.g. AGN feedback)
 - simulations that include both can help to find least affected signatures & give better predictions for observational tracers
- first modified gravity non-radiative and radiative hydrodynamical simulations
- modified gravity effects in the Lyman-α forest are small
 - challenging to constrain modifications of gravity with it