Cosmological Constraints from Weak Lensing with *CFHTLenS* and *Planck*

Jia Liu Columbia University LSS, Garching, July 24, 2015

Jan Kratochvil 🛛 🛚 🛚 🗛

Morgan May

Zoltán Haiman 🛛 A

Andrea Petri

J. Colin Hill

Lam Hui

Weak Lensing Primer

Convergence Map 2D Projection of 3D matter density

Outline

- 1. Weak lensing non-Gaussian statistics: Peak counts with *CFHTLenS*
- 2. Cross-correlation:
 - Planck CMB lensing and CFHTLenS galaxy lensing

Two-Point Correlation Function

$$\xi(|\theta_i - \theta_j|) = \left\langle \kappa(\theta_i) \kappa(\theta_j) \right\rangle$$

Which is the True Convergence Map?

Non-Gaussianity

Peak Counts

Peak Counts

Yang et al 2011

convergence ĸ

Yang et al 2011

CFHTLenS fields

154 deg²,
$$i_{AB} \le 24.5$$

6 million galaxies

Summer CFHTLS fields: D4 & W4

Fall CFHTLS fields: D1 & W1 Spring CFHTLS fields: D3 & W3 Winter CFHTLS fields: D2 & W2

CFHTLS fields across the northern sky

Wide Deep

CFHTLS Collaboration

N-body & Ray-tracing Simulations

(1) N-body sims (Gadget): 91 cosmological models (2) Ray-tracing to each of the 6 million galaxies

(3) Convergence maps (1000 realizations/model)

The Emulator

Power Spectrum

Peak Counts

JL et al 2015

Result #1

(1) Adding peak counts improves the constraints by <u>a factor of ~ 2.</u>

(2) Useful for systematics calibration.

Contour Sizes

	$w extsf{-}\Omega_m$		$\Omega_m - \sigma_8$	
	68%	95%	68%	95%
power spectrum	1.00	1.74	1.00	1.99
peak counts	0.41	1.01	0.59	1.51
combined	0.42	1.05	0.61	1.46

Outline

- 1. Weak lensing non-Gaussian statistics: Peak counts with *CFHTLenS*
- Cross-correlation:
 Planck CMB lensing and *CFHTLenS* galaxy lensing

Weak Lensing of the Cosmic Microwave Background

Result #2: 2σ Tension with Λ CDM

Result #2: 2σ Tension with Λ CDM

Sources of the 50% Suppression?

Photo z (10%)

Intrinsic Alignments (10-15%)

Masking of tSZ Clusters (5-10%)

Multiplicative Bias (?)

Modified Gravity ??

$$\sigma_{8}^{}(\Omega_{m}^{}/0.27)^{0.46}$$

This Work	$0.63 \begin{array}{c} ^{+0.14} \\ \scriptstyle - \ 0.19 \end{array}$	
CFHTLenS	0.77 ± 0.04	
Planck TT	0.89 ± 0.03	

Conclusions

- → Peak Counts (1412.0757): when combined with the power spectrum, can tighten cosmological constraint by a factor of ~ 2.
- Planck CMB lensing & CFHTLenS galaxy lensing cross-correlation (1503.06214):
 2σ detection, at 2σ tension with ΛCDM. Theoretical uncertainties and/or systematic errors are at play.

