Gravitational Lensing for Planck 2015

Antony Lewis

On behalf of the Planck Collaboration

Planck 2015 results. XV. Gravitational lensing

European Research Council Established by the European Commission

arXiv:1502.01591

Science & Technology Facilities Council

Supporting top researchers from anywhere in the world

$T(\hat{n}) \ (\pm 350 \mu K)$

 $\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$

$T(\hat{n}) \ (\pm 350 \mu K)$

$\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$

Main Improvements over 2013

- \star Error bars reduced by nearly a factor of 2x.
 - Twice as much temperature data + all-new polarization data.
- ★ Full set of lensing estimators (TT, TE, EE, EB, TB) + All combined (MV)
 - Crosses give 15 possible lensing power spectrum estimators.
- ★ SMICA component-separated maps as baseline, on 67.3% sky.
- ★ Numerous analysis improvements.
 - Improved likelihood (N⁽¹⁾ theory dependence, faster)
 - Many new consistency and null tests:
 - Internal consistency of polarization and temperature estimator pairs.
 - Half-mission nulls and crosses

2013 TT

2015 TT

2015 TE

2015 EE+EB

2015 "MV"

Noise power spectra for lensing estimators.

Simulated Lensing Potential φ

Simulated MV Estimate

Lens Reconstruction Pipeline

1) Raw power spectrum of quadratic estimates.

2) Correct for noise bias estimated from sims.

3) Apply further data-based estimate of noise bias to reduce sensitivity to inaccuracy of sims.

4) Correct for "N1" bias.

(cosmetic: likelihood uses full result and calculates N1)

5) MC correction for mode mixing / inaccuracies in normalization.

Lensing Power Spectrum

Reconstruction passes many internal consistency tests.

Highlights:

- Half-mission cross.
- Individual estimators.
- Replace one of four points in trispectrum with 353GHz.

Individual Cross-spectra

Null Tests

Conservative likelihood uses $40 \le L \le 400$

LCDM Parameter Constraints from CMB Lensing Only

LCDM Parameter Constraints from CMB Lensing Only

LCDM Parameter Constraints from CMB Lensing Only

Optical Depth Constraints

... are consistent with low-L polarization (low-L update soon)

Extended Parameter Spaces

Lensing reduces Alens pulls in CMB power spectrum likelihood.

Cross-correlation with the Infrared Background

Now detected at ~50σ.

CIB provides an independent, high S/N probe of **φ**, useful for lensing B-mode estimates.

Lensing B-modes

Now detected at ~10σ.

$$B_{\ell_B m_B}^{\text{lens}} = \sum_{LM} \sum_{\ell_E m_E} \begin{pmatrix} \ell_E & \ell_B & L \\ m_E & -m_B & M \end{pmatrix} W_{\ell_E \ell_B L}^{\phi_{EB}} E_{\ell_E m_E} \phi_{LM}$$

$$X \text{ B}$$

CMB cross-correlation (lensing bispectrum)

ISW-lensing at 3o

Lensing potential estimate also combined with other tracers in dedicated ISW paper.

What's next for Planck lensing?

- New maps may reduce map-level systematics (T->E etc)
- Better characterisation of foreground/SZ/NG contamination
- Origin of null test failures?
- More optimal weighting of polarization could improve S/N; possible improvements from more optimal estimators
- Full L-range likelihood and T-phi correlation likelihood

