Mapping the z > 2 Cosmic Web with 3D Ly α Forest Tomography "Theoretical & Observational Progress on the Large-Scale Structure of the Universe", Garching bei München

Khee-Gan (K.G.) Lee

Max Planck Institut für Astronomie, Heidelberg

July 21, 2015

Collaborators: Joe Hennawi (MPIA), Martin White (Berkeley), Xavier Prochaska (UCSC), Casey Stark (Berkeley), David Schlegel (LBNL), R. Michael Rich (UCLA), Nao Suzuki (IPMU), COSMOS collaboration

K.G. Lee Ly Forest Tomography

Lyman- α Forest as Probe of z > 2 Universe

Restframe 1215.67 Å Lyman- α absorption caused by IGM neutral hydrogen in front of background QSO. This transition redshifts into optical wavelengths at z > 2.

On $\gtrsim 100 kpc$ scales, the absorption is a good non-linear tracer for the underlying LSS in the mildly overdense (0 $\gtrsim \rho(x)/\langle \rho \rangle \gtrsim 10$) regime:

$$\tau(x) \propto \frac{T_0^{-0.7}}{\Gamma} \left(\frac{\rho(x)}{\langle \rho \rangle}\right)^{2-0.7(\gamma-1)} \label{eq:tau}$$

K.G. Lee Lya

 $Ly\alpha$ Forest Tomography

・ 同 ト ・ ヨ ト ・ ヨ ト

Ly α Forest Tomography

Closely-separated Ly α forest sightlines can enable tomographic reconstruction of 3D absorption field on scales comparable to sightline separation (Pichon et al 2001, Caucci et al 2008, Lee et al 2014a)

Credit: Casey Stark (Berkeley)

But quasars aren't enough to pull this off....

K.G. Lee Ly Forest Tomography

イロン イボン イヨン イヨン

Availability of Background Sources

 $12' \times 10.8'$ Hubble ACS Image (Koekemoer+2007)

K.G. Lee Ly Forest Tomography

・ロン ・回と ・ヨン ・ ヨン

Availability of Background Sources

 $12' \times 10.8'$ Hubble ACS Image (Koekemoer+2007)

It is necesary to target faint background LBGs for tomography!

K.G. Lee Ly Forest Tomography

(E)

Feasibility of Ly α Forest Tomography

In Lee+2014a, I argued that existing 8-10m class telescopes can collect sufficient S/N from \sim 24th mag LBGs to map z>2 LSS on scales of several Mpc.

Right: Examples of mock spectra from simulations. Below: Simulated tomographic maps smoothed on $\sigma = 3.5 \text{ h}^{-1}$ Mpc scale.

(日) (同) (日) (日)

K.G. Lee Lya Forest Tomography

Feasibility of Ly α Forest Tomography

In Lee+2014a, I argued that existing 8-10m class telescopes can collect sufficient S/N from \sim 24th mag LBGs to map z>2 LSS on scales of several Mpc.

Right: Examples of mock spectra from simulations. Below: Simulated tomographic maps smoothed on $\sigma = 3.5 \ h^{-1}$ Mpc scale.

K.G. Lee

Lyα Forest Tomography

Hunting Protoclusters with $Ly\alpha$ Tomography

Stark, White, Lee & Hennawi (arXiv:1412.1507): studied progenitors of simulated $M > 10^{14} M_{\odot}$ clusters at z = 2.5 in a N-body simulation (L = 250 h⁻¹ Mpc)

- Protoclusters are $r \sim 5 h^{-1}$ Mpc overdensities in Ly α absorption
- ▶ Can find $M > 3 \times 10^{14} M_{\odot}$ progenitors with ~ 90% purity and ~ 75% completeness $\rightarrow N \sim 5$ per 10⁶ h⁻³Mpc³
- Even with known protoclusters, can characterize full 3D morphology, e.g. collapsing along single axis vs more isotropically.

K.G. Lee Ly a Forest Tomography

Detecting High-z Voids

Stark, Font-Ribera, White & Lee (1504.03290): look for LSS voids with simulated Ly α forest tomography

 $R=11.7\,h^{-1}$ Mpc void, Stark+2015

- Used simple spherical finder: grow spheres around minima until some $\bar{\rho}$.
- ▶ Able to pick up $R \ge 6 h^{-1}$ Mpc voids with ~ 70% purity and ~ 60% completeness $\rightarrow ~ 100$ voids per $10^6 h^{-3}$ Mpc³ volume
- Synergy with JWST-NIRSPEC to study sub-L_{*} void galaxies in the $z \sim 2-3$ accretion era?

K.G. Lee Ly Forest Tomography

Pilot Survey in COSMOS

- Pilot observations in 2014/2015 on COSMOS field
- LRIS spectrograph on 10.3m Keck-I telescope, Hawai'i
- Total ~ 15 hrs on-sky, ~ 2hr exposures per pointing
- Targeted known spec-z's and 30-band multi-wavelength photo-z's at 2.3 < z < 3.0 down to g ~ 25.0
- ► 49 galaxies+QSOs within blue area (11.8' × 13.5') $\rightarrow \sim 1100 \text{ deg}^{-2}$ (c.f. ~ 15 deg^{-2} in BOSS Ly α)

(日) (同) (三) (

K.G. Lee

Lyα Forest Tomography

Example Spectra

K.G. Lee Lya Forest Tomography

Tomographic Reconstruction

Measure Ly α forest transmission $\delta_F = F/\langle F \rangle - 1$ ('data'), pixel noise estimates σ_F , and [x, y, z] positions. Perform Wiener filtering on these inputs to estimate the map:

$$\mathbf{M} = \mathbf{C}_{\mathsf{M}\mathsf{D}} \cdot (\mathbf{C}_{\mathsf{D}\mathsf{D}} + \mathbf{N})^{-1} \cdot \mathbf{D}$$

The noise term provides some noise-weighting to the data. We assume Gaussian correlation function in the map, where $C_{DD} = C_{MD} = C(\mathbf{r}_1, \mathbf{r}_2)$, and

$$\mathbf{C}(\mathbf{r_1}, \mathbf{r_2}) = \sigma_F^2 \exp\left[-\frac{(\Delta r_{\parallel})^2}{2L_{\parallel}^2}\right] \exp\left[-\frac{(\Delta r_{\perp})^2}{2L_{\perp}^2}\right], \quad (1)$$

with $L_{\perp}=3.5h^{-1}$ Mpc and $L_{\parallel}=2.7\,h^{-1}$ Mpc, and $\sigma_F=0.8$ (Note average sightline separation $\langle d_{\perp}\rangle\approx2.8\,h^{-1}$ Mpc).

K.G. Lee Ly Forest Tomography

3D Map of Cosmic Web at 2.2 < z < 2.5

 $\begin{array}{l} \mbox{260}\ h^{-1}\ \mbox{Mpc}\ \mbox{along}\ \mbox{LOS};\ 14\ h^{-1}\ \mbox{Mpc}\ \times\ 16\ h^{-1}\ \mbox{Mpc}\ \ transverse \rightarrow \\ V = 5.8 \times\ 10^4\ h^{-3}\ \mbox{Mpc}^3 \sim\ (39\ h^{-1}\ \ \mbox{Mpc})^3 \end{array}$

K.G. Lee Ly Forest Tomography

イロト 不得 とくほと くほとう ほ

Correlations with Foreground Galaxies?

There are 61 known galaxies with spectroscopic redshifts overlapping the map volume. We can compare their locations with the overall map PDF:

Correlations with Foreground Galaxies?

There are 61 known galaxies with spectroscopic redshifts overlapping the map volume. We can compare their locations with the overall map PDF:

Systemic redshift uncertainties ($\sigma_{\rm los}\sim 3-4\,h^{-1}$ Mpc) in galaxies' LOS position are comparable to our $\sim 3-4\,h^{-1}$ Mpc map smoothing, weakening the correlation...

K.G. Lee Ly Forest Tomography

(人間) シスヨン イヨン

Correlations with Foreground Galaxies?

There are 61 known galaxies with spectroscopic redshifts overlapping the map volume. We can compare their locations with the overall map PDF:

If we plot only NIR redshifts from MOSFIRE, these have smaller redshift uncertainties: even more clearly associated with high-density regions in the tomography.

K.G. Lee Ly Forest Tomography

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

K.G. Lee Lyα Forest Tomography

< ロ > < 回 > < 回 > < 回 > < 回 >

Ly α Forest Tomography

A □ > A □ > A

э

 $Ly\alpha$ Forest Tomography

• • • • • • • • • • • • • •

э.

э

K.G. Lee

Lyα Forest Tomography

CLAMATO Survey

(COSMOS Lyman-Alpha Mapping And Tomography Observations)

- Proposed survey targeting 0.8 sq deg of COSMOS field (~ 30 nights on Keck)
- ▶ Target ~ 1000 LBGs at 2.3 $\leq z \leq 3$ for R ~ 1000 spectroscopy $\rightarrow \langle z \rangle \sim 2.3$ LSS map over $10^{6} h^{-3} Mpc^{3} \sim (100 h^{-1} Mpc)^{3}$

Dimensions: $(65 \text{ Mpc})^2 \times (100 \text{ Mpc})$

K.G. Lee

Lyα Forest Tomography

K.G. Lee Lya Forest Tomography

Voids and Protoclusters in CLAMATO

20 -20 -10

-10

 $x_{\perp} (h^{-1} \text{Mpc})$

K G Lee

10

 x_{\perp} (h^{-1} Mpc)

 $x_{\perp} = (h^{-1} \text{Mpc})$

-10

10 20 -20 -10 10

 $x_{\perp} (h^{-1} Mpc)$

A (1) > A (1) > A

Pushing Towards Cosmological Volumes

 $Ly\alpha$ tomography will push towards large volumes over the next few years...

CLAMATO (2016-2018):

- LRIS Spectrograph on 10.3m Keck-I
- ► FOV: 7' × 5' (~ 0.01deg²)
- Target ~ 20 sources per FOV ($g \leq 24.7$)
- ▶ Time: ~ 40 nights to cover 0.8deg² \rightarrow 2.3 < z < 2.5 Tomographic map probing $\sim 3.5 \ h^{-1}$ Mpc over $V \sim 10^6 \ h^{-3}$ Mpc

Pushing Towards Cosmological Volumes

Ly α tomography will push towards large volumes over the next few years...

CLAMATO (2016-2018):

- LRIS Spectrograph on 10.3m Keck-I
- ► FOV: 7' × 5' (~ 0.01deg²)
- Target ~ 20 sources per FOV ($g \leqslant 24.7$)
- ► Time: ~ 40 nights to cover 0.8deg² → 2.3 < z < 2.5 Tomographic map probing ~ 3.5 h⁻¹ Mpc over V ~ 10⁶ h⁻³ Mpc
- Strawman Tomography Survey on Subaru-PFS (2018-):
 - Prime Focus Spectrograph on 8.2m Subaru Telescope
 - FOV: 1.2deg²
 - Target ~ 2000 sources per FOV $(g \leq 24.0)$
 - ► Time: 10 nights to cover 20deg^2 $\rightarrow 2.5 < z < 3.2$ Tomographic map probing $\sim 5 \text{ h}^{-1}$ Mpc over $V \sim 10^8 \text{ h}^{-3}$ Mpc

Conclusion

- First exploitation of z > 2 faint LBGs as Lyα forest background sources to probe Lyα forest absorption
- First direct 3D map of LSS at z > 2 probing several Mpc scales in COSMOS field
 - Clearly see overdensities and voids
 - Good correlation of known spec-z galaxies with overdensities
 - Clear signature of known z = 2.44 galaxy protocluster
- Upcoming CLAMATO Survey on Keck-I
 - Survey central $\sim 0.8 \text{ deg}^2$ region of COSMOS
 - \blacktriangleright Will map out $V \sim (100 \ h^{-1} \ \text{Mpc})^3$ down to scales of $\sim 3-4 \ h^{-1} \ \text{Mpc}$
 - Good synergy with multiwavelength data in COSMOS
- Future wide-field spectrographs on 8m class telescopes will be able to cover ~ Gpc³ volumes
- Science: Protoclusters, voids, high-z galaxy environments, small-scale Lyα forest clustering.... YOU TELL ME!

Continuum Estimation

The Ly α forest transmission F = f/C is observed flux, f, divided by estimated intrinsic 'continuum', C. Fortunately there are few strong absorbers in the Ly α forest region, which we can mask.

We perform 'mean-flux regulation' (Lee et al 2012) using the Berry et al 2012 composite at 1040 - 1190 Å, i.e. adjust amplitude and slope until the resulting $\langle F \rangle$ matches measurements from quasars.

K.G. Lee Ly Forest Tomography

UV spectra of Low-z Starforming Galaxies

