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• Two-point correlation function ξ(r) = excess 
number of pairs beyond random at separation r  
 
 
where δ(x) is the density contrast, excess 
number density beyond mean:  
        δ(x) = density(x)/(mean density) - 1  

• Power spectrum is the Fourier transform of it:  
 
 

r

⇠(r) = h�(x)�(x+ r)i

h�(k)�(k0)i = (2⇡)3P (k)�D(k+ k0)

statistical homogeneity (translational invariance)

Dirac delta and homogeneity



Parameterizing inhomogeneity
• Deviation from statistical homogeneity in the two-point  

functions will be evident in the off-diagonal correlation:

• Q: How does the inhomogeneity appear?

• A way to organize the off-diagonal correlations: K = -(k1+k2)

• The pattern of inhomogeneity is encoded in the function f!
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cf. parameterizing anisotropy
• This is analogous to the BiPoSH (bipolar spherical harmonic) 

expansion to characterize the statistical anisotropy:  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Example: 
If we were to move with β~1  
w.r.t. CMB rest frame,
CMB would be statistically 
anisotropic (J=1, M=0) with

A10
``0 > 0



What makes ξ(r) inhomogeneous?
• Unknown systematics of the survey

• If something varies over the survey volume and that 
something modulates the amplitude of clustering

• Our Universe might be intrinsically inhomogeneous

• No compelling evidence so far, therefore, must be small!

• higher-order correlation functions

• Non-linaerities (e.g. position dependent power spectrum)

• Primordial three-point function → clustering fossil



Non-Gaussianity and homogeneity
•  IF we have a non-linear coupling between primordial density 

fluctuations and a spectator field hp (JK coupling):  
 

•  THEN, density power spectrum we observe now has non-zero 
off-diagonal components: Fossil equation  
 

(local)

polarization basis (scalar, vector, tensor,…) 

power spectrum of new field

coupling amplitude

Jeong & Kamionkowski (2012)
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Why called clustering fossils?
• Inflaton(s) : a scalar field(s) responsible for inflation

• But, inflaton might not be alone. Many inflationary models need/
introduce additional fields. But, direct detection of such fields 
turns out to be very hard:

• Additional Scalar: may not contribute seed fluctuations

• Vector: decays as 1/[scale factor] 

• Tensor: decays after coming inside of comoving horizon

• Clustering fossils may be the only way of detecting them!



SVT can be distinguished with εpij

• In a symmetric 3x3 tensor, we have 6 degrees of freedom, which 
are further decomposed by Scalar, Vector and Tensor 
polarization modes.

• They are orthogonal:

• Scalar (p=0,z): 

• Vector (p=x,y):                                        where 

• Tensor [Gravitational Waves](p=x,+): transverse and traceless 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Effect of fossils on 2PCF

• Statistical homogeneity is broken in the presence of the 
spectator field hp(K).

• Depending on the polarization, the way that the spectator 
affects clustering is different. How?

• I will show a rotation view of equi-correlation-function 
surface when hp(K) propagates upward.

• Without hp(K), we expect that it should be spherical.
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ξ(r) with single scalar mode (p=0,z)
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ξ(r) with single vector mode (p=x,y)
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ξ(r) with single tensor mode (p=+,x)
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Example: tensor clustering fossils
• For the single-field slow-roll inflation models (kt=k1+k2+k3),  

Maldacena (2003)
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• In the squeeze limit, long-wavelength tensor field rescales small 
scale wave-vector: k2 → k2 - hijkikj (or length x2 → x2 + hijxixj)!

• Note: the local observer (use physical ruler, not the coordinate 
ruler) will not see the effect!



Interaction @ horizon crossing
• After inflation, tensor (long) 

modes re-enters horizon, and 
interact with density (small) 
modes:

• Note that the influence dies out 
as tensor mode itself decays 
after horizon re-entry.

Dai, Jeong & Kamionkowski (2013)
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• Deflection of photon changes the 
observed location of galaxies.

• Geodesic equation gives Δxμ

• On large scales (K→0), the 
displacement field is 
 

• This effect cancels the super-
horizon contributions!

Light deflection due to GW

galaxy is here

galaxy is 
observed to be 
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Observable fossil amplitude

• Quadrupole power spectrum 
contribution (when K≪kF) from 
single-field slow-roll inflation

• large-scale (super-horizon) fossils 
cancel completely with projection

• small-scale fossil cancels partially 
with tensor-scalar interaction 
around horizon crossing
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Fossils from other inflation models
• The large-scale cancelation happens only for the SFSR models

• With scalar-scalar-tensor correlation different from SFSR

• Power quadrupole can constrain kmin (beginning of inflation)

• clustering fossil signal can be big!

• e.g.  
Solid inflation  
 
Quasi-single field inflation

Dimastrogiovanni, Fasiello, Jeong & Kamionkowski (2014)
B /cc =

3

2

R
✏
P⇣(k)Ph(K)

B /cc = �⇡2

2
w(⌫)

✓̇20
H2

P⇣(k)Ph(K)Dimastrogiovanni, Fasiello & Kamionkowski (2015)



• Let’s start from Fossil equation

• Rearranging it a bit, we get a naive estimator for the new field, 
which is far from optimal:  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Azimuthal(φ)-dependence, [cos(sφ)] s=spin, 
distinguishes scalar from vector from tensor 
geometrically! 

LSS fossil estimator: naive
Jeong & Kamionkowski (2012)



Optimal estimator (single mode)

• Inverse-variance weighting gives an optimal estimator for a 
single mode

• With a noise power spectrum (Ptot = Pgalaxy + Pnoise)  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The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
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specify this trispectrum more precisely, though, requires
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eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3�
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and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
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where the noise power spectrum,

P

n

p

(K) =

"
X

k

��
f

p

(k,K� k)✏p
ij

k

i(K � k)j
��2

2V P

tot(k)P tot(|K� k|)

#�1

, (5)

is the variance with which \
h

p

(K) is measured. This
P

n

p

(K) is a function only of the magnitude K (not its
orientation) as a consequence of global SI, and for the
same reason, P⇥(K) = P

+

(K) ⌘ P

t

(K), for both the
signal and noise power spectra, and similarly P

x

(K) =
P

y

(K) ⌘ P

v

(K).
In general, the amplitudes h

p

(K) arise as realizations

of random fields with power spectra P

h

(K) = A

h

P

f

h

(K),
for h = {s, v, t}, which we write in terms of amplitudes
A

h

and fiducial power spectra P

f

h

(K). We now proceed
to write the optimal estimator for the amplitudes A

h

.

Each Fourier-mode estimator \
h

p

(K) for the appropri-
ate polarizations (s for scalar, x and y for vector, and +
and ⇥ for tensor) provides an estimator,

[
A

K,p

h

=
h
P

f

h

(K)
i�1


V

�1

���\h
p

(K)
���
2

� P

n

p

(K)

�
, (6)

for the appropriate power-spectrum amplitude. Here we
have subtracted out the noise contribution to unbias the
estimator. If \

h

p

(K) is estimated from a large number
of �(k

1

)-�(k
2

) pairs, then it is close to being a Gaus-
sian variable. If so, then the variance of the estimator in
Eq. (6) is, under the null hypothesis,

2
h
P

f

h

(K)
i�2 ⇥

P

n

p

(K)
⇤
2

. (7)

Adding the estimators from each Fourier mode with
inverse-variance weighting leads us to the optimal esti-

mator,

c
A

h

= �

2

h

X

K,p

h
P

f
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(K)
i
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⇥
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◆
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(8)
where

�

�2

h

=
X

K,p

h
P

f

h

(K)
i
2

/2
⇥
P

n

p

(K)
⇤
2

. (9)

For the vector-power-spectrum amplitude c
A

v

we sum
over p = {x, y} and for the tensor-power-spectrum am-

plitude c
A

t

over p = {+,⇥}. Following the discussion

above, the sum on p is only for p = s for c
A

s

.
The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
inclusion of the additional contribution induced by modes
K that involve the other two diagonals of the quadrilat-
eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3�
from the null hypothesis—then the optimal measurement
and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
ogous to weak-lensing estimators [13].
We now evaluate the smallest amplitudes A

s

, A
v

, and
A

t

that can be detected with a given survey. To do
so, we take for our fiducial models nearly scale-invariant
spectra P

h

(K) = A

h

K

nh�3, with |n
h

| ⌧ 1. We more-
over take the density-density–new-field bispectrum to be
of the form in Ref. [7]. We then find that the inte-
grand (using

P
k ! V

R
d

3

k/(2⇡)3) in Eq. (5) is dom-
inated by the squeezed limit (K ⌧ k

1

' k

2

) where
f

p

(k
1

,k

2

) ' �(3/2)P (k
1

)/k2
1

. We then approximate
P (k)/P tot(k) ' 1 for k < k

max

, where k
max

is the largest
wavenumber for which the power spectrum can be mea-
sured with high signal to noise, and P (k)/P tot(k) ' 0
for k > k

max

. This then yields a noise power spectrum
P

n

{v,t}(K) ' 20⇡2

/k

3

max

and P

n

s

(K) ' 8⇡2

/k

3

max

. Evalu-

ating the integral in Eq. (9), we find the scalar, vector,
and tensor amplitudes detectable at & 3� (for n

h

' 0)
to be

3�
h

' 30⇡
p
3⇡C

h

✓
k

max

k

min

◆�3

' 288C
h

✓
k

max

k

min

◆�3

,

(10)
where C{t,v} = 1 and C

s

= 2/5. The smallest detectable
power-spectra amplitudes are thus inversely proportional
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Optimal estimator 
for the power amplitude Ah

• For a stochastic background of new fields with power 
spectrum Pp(K)=AhPhf(K), we optimally summed over different 
K-modes to estimate the amplitude by (w/ NULL hypothesis):  
 

• Here, the minimum uncertainty of measuring amplitude is  
 

cAh = �2
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h
P f
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��2
h =

X
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Order-of-magnitude calculation
• For the SFSR inflation models (Maldacena, 2003)  

       
         
 
 
 
 
 
 
 

4

FIG. 2: The smallest scalar, vector, and tensor power-
sepctrum amplitudes As, Av and At, respectively, detectable
at the 3� level as a function of the maximum wavenumber
k

max

of the survey. Shown are results for survey volumes
of 10 [Gpc/h]3 and 200 [Gpc/h]3, or minimum wavenumbers
k

min

' 0.001 [h/Mpc] and k

min

' 0.003 [h/Mpc], respectively.

to the number of Fourier modes in the survey. We show
the projected detection sensitivities for surveys with vol-
umes of 200 [Gpc/h]3 and 10 [Gpc/h]3 in Fig. 2.

For example, if we apply this estimate to a tensor field
and assume this tensor field to be primordial gravita-
tional waves, then a sensitivity to a tensor amplitude
A

t

' 2 ⇥ 10�9 near the current upper limit requires
k

max

/k

min

& 5200. Such a dynamic range is probably
beyond the reach of galaxy surveys, but it may be within
reach of the 21-cm probes of neutral hydrogen during the
dark ages envisioned in Refs. [10, 14]. Of course, the sig-
nal could be larger if the inflaton is correlated with a
scalar, vector, or tensor field that leaves no other trace.

Finally, several new tests for parity-violating early-
Universe physics can be developed from simple modifi-
cation of the estimators above. To do so, we substitute
the x and y polarizations, and + and ⇥ polarizations,
with circular-polarization tensors ✏

±v

ij

= ✏

x

ij

± i✏

y

ij

and

✏

±t

ij

= ✏

+

ij

± i✏

⇥
ij

. The two right-most patterns shown in
Fig. 1 are the circular polarization patterns for tensor
and vector modes. It may then be tested whether the
power spectra for right- and left-circular polarizations are
equal. For example, chiral-gravity models [15] may pre-
dict such parity-violating signatures in primordial gravi-
tational waves, and similar models with parity-violating
vector perturbations are easily imaginable.

Of course, “real-world” e↵ects like redshift-space dis-
tortions, biasing, and nonlinear evolution, must be taken
into account before the estimators written above can be
implemented, but there are well-developed techniques to
deal with these issues [16].

In summary, we have shown that the most general
two-point correlation functions for the cosmological mass

distribution can be decomposed into scalar, vector, and
tensor distortions. We have presented straightforward
recipes for measuring these distortions. Such e↵ects may
arise if the inflaton is coupled to some new field during
inflation. We have avoided discussion of specific models,
but the introduction of new fields during inflation is quite
generic to inflationary models. We therefore advocate
measurement of these correlations with galaxy surveys,
and in the future with 21-cm surveys, as a simple and
general probe of new inflationary physics.
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• projected 3-sigma (99% 
C.L.) detection limit with 
galaxy survey parameters

• To detect the gravitational 
wave, we need a large 
dynamical range

• Current and future survey 
should set a limit on 
primordial V and T (and 
higher-spin fields)!

r=1
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Conclusion
• Off-diagonal correlators are the place to look at the signature 

for the spatial inhomogeneity.

• “Clustering fossil” is a way to look at primordial spectator fields 
that existed during the early time

• requires large dynamical range to beat the small signal (e.g. 
21cm). We can distinguish scalar/vector/tensor fossils.

• Also, interesting potential to probe higher spin field.

• We already have data, shall we dig for clustering fossils?

• Systematics: survey systematics, non-linearities, non-Gaussianities


