A UNIQUE COMPOSITION OF EMPTINESS COSMIC VOIDS AS COSMOLOGICAL PROBES

NICO HAMAUS

in collaboration with GUILHEM LAVAUX, ALICE PISANI, PAUL SUTTER, BENJAMIN WANDELT

Theoretical and Observational Progress on LSS of the Universe

ESO, Garching, July 23, 2015

OUTLINE	INTRODUCTION	VOIDS IN REAL SPACE	VOIDS IN REDSHIFT SPACE	CONCLUSIONS

2 Voids in real space (dark matter): arXiv 1403.5499

3 Voids in redshift space (galaxy survey): arXiv 1507.04363

CONCLUSIONS

DEFINITION OF VOIDS

Search for local minima in density field

CONCLUSIONS

DEFINITION OF VOIDS

Search for local minima in density field

and raise a density threshold until a ridge is reached

Watershed algorithm, Platen et al. (2007)

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

DEFINITION OF VOIDS

Zobov: Neyrinck (2008)

Sutter, Lavaux, Wandelt, Weinberg (2012)

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

OBSERVED VOIDS (SDSS)

VOID PROFILE

Estimate density and velocity profile by "stacking" tracer particles around void centers

$$\rho_{\mathbf{v}}(r) = \frac{3}{4\pi} \sum_{i} \frac{m_i(\mathbf{r}_i)}{(r+\delta r)^3 - (r-\delta r)^3}$$
$$v_{\mathbf{v}}(r) = \frac{1}{N(r)} \sum_{i} \mathbf{v}_i(\mathbf{r}_i) \cdot \frac{\mathbf{r}_i}{r_i}$$

CONCLUSIONS

VOID PROFILE

Estimate density and velocity profile by "stacking" tracer particles around void centers

$$\rho_{\mathbf{v}}(r) = \frac{3}{4\pi} \sum_{i} \frac{m_i(\mathbf{r}_i)}{(r+\delta r)^3 - (r-\delta r)^3}$$
$$v_{\mathbf{v}}(r) = \frac{1}{N(r)} \sum_{i} \mathbf{v}_i(\mathbf{r}_i) \cdot \frac{\mathbf{r}_i}{r_i}$$

With linear theory

$$\begin{split} v_{\rm v}(r) &= -\frac{1}{3}\frac{f(z)H(z)}{1+z}r\Delta_{\rm v}(r)\\ \text{where} \qquad f(z) &= \Omega_{\rm m}^{0.55}(z) \;, \qquad \Delta_{\rm v}(r) = \frac{3}{r^3}\int_0^r \left(\frac{\rho_{\rm v}(q)}{\bar{\rho}} - 1\right)q^2{\rm d}q \end{split}$$

CONCLUSIONS

VOID PROFILE

Estimate density and velocity profile by "stacking" tracer particles around void centers

$$egin{aligned} & p_{\mathrm{v}}(r) = rac{3}{4\pi} \sum_{i} rac{m_{i}(r_{i})}{(r+\delta r)^{3}-(r-\delta r)^{3}} \ & v_{\mathrm{v}}(r) = rac{1}{N(r)} \sum_{i} oldsymbol{v}_{i}(r_{i}) \cdot rac{r_{i}}{r_{i}} \end{aligned}$$

With linear theory

$$v_{\mathbf{v}}(r) = -\frac{1}{3} \frac{f(z)H(z)}{1+z} r \Delta_{\mathbf{v}}(r)$$

where

$$f(z) = \Omega_{\rm m}^{0.55}(z) , \qquad \Delta_{\rm v}(r) = \frac{3}{r^3} \int_0^r \left(\frac{\rho_{\rm v}(q)}{\bar{\rho}} - 1\right) q^2 \mathrm{d}q$$

Empirical best-fit model (4 parameters)

$$\frac{\rho_{\rm v}(r)}{\bar{\rho}} - 1 = \delta_c \frac{1 - (r/r_s)^{\alpha}}{1 + (r/r_{\rm v})^{\beta}} , \quad r_{\rm v} \equiv (3V_{\rm v}/4\pi)^{1/3}$$

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOID PROFILE: DENSITY

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOID PROFILE: DENSITY

VOID PROFILE: VELOCITY

VOID PROFILE: VELOCITY

VOID PROFILE: VELOCITY

VOIDS IN REDSHIFT SPACE

Peculiar motions of galaxies cause redshift-space distortions:

$$\tilde{\mathbf{r}} = \mathbf{r} + \mathbf{v}_{\parallel} H^{-1}(z)$$

- L to line of sight: Pancakes of God from linear growth
 growth
- It to line of sight:
 Fingers of God from nonlinear collapse
- Galaxy correlation function no longer isotropic, what about voids?

Melott et al. (1998)

Model

Void-galaxy cross-correlation function in redshift space:

$$1 + \tilde{\xi}_{\rm vg}(\tilde{\mathbf{r}}) = \int \mathcal{P}(\mathbf{v}, \mathbf{r}) \left[1 + \xi_{\rm vg}(\mathbf{r}) \right] \, \mathrm{d}^3 v = \int_{-\infty}^{\infty} \mathcal{P}\left(v_{\parallel}, \mathbf{r} \right) \frac{\rho_{\rm v}(r)}{\bar{\rho}} \, \mathrm{d} v_{\parallel}$$

MODEL

Void-galaxy cross-correlation function in redshift space:

$$1 + \tilde{\xi}_{\rm vg}(\tilde{\mathbf{r}}) = \int \mathcal{P}\left(\mathbf{v}, \mathbf{r}\right) \left[1 + \xi_{\rm vg}(\mathbf{r})\right] \, \mathrm{d}^{3}v = \int_{-\infty}^{\infty} \mathcal{P}\left(v_{\parallel}, \mathbf{r}\right) \frac{\rho_{\rm v}(r)}{\bar{\rho}} \, \mathrm{d}v_{\parallel}$$

Assume a Gaussian pairwise velocity distribution with mean $v_{\rm v}(r) \frac{r_{\parallel}}{r}$

$$\mathcal{P}\left(v_{\parallel},\mathbf{r}\right) = \frac{1}{\sqrt{2\pi}\sigma_{v}(\mathbf{r})} \exp\left[-\frac{\left(v_{\parallel}-v_{\mathrm{v}}(r)\frac{r_{\parallel}}{r}\right)^{2}}{2\sigma_{v}^{2}(\mathbf{r})}\right]$$

and with velocity dispersion

$$\sigma_v^2(\mathbf{r}) = \sigma_{\parallel}^2(r) \frac{r_{\parallel}^2}{r^2} + \sigma_{\perp}^2(r) (1 - \frac{r_{\parallel}^2}{r^2})$$

MODEL

Void-galaxy cross-correlation function in redshift space:

$$1 + \tilde{\xi}_{\rm vg}(\tilde{\mathbf{r}}) = \int \mathcal{P}\left(\mathbf{v}, \mathbf{r}\right) \left[1 + \xi_{\rm vg}(\mathbf{r})\right] \, \mathrm{d}^{3}v = \int_{-\infty}^{\infty} \mathcal{P}\left(v_{\parallel}, \mathbf{r}\right) \frac{\rho_{\rm v}(r)}{\bar{\rho}} \, \mathrm{d}v_{\parallel}$$

Assume a Gaussian pairwise velocity distribution with mean $v_{\rm v}(r) \frac{r_{\parallel}}{r}$

$$\mathcal{P}\left(v_{\parallel},\mathbf{r}\right) = \frac{1}{\sqrt{2\pi}\sigma_{v}(\mathbf{r})} \exp\left[-\frac{\left(v_{\parallel}-v_{\mathrm{v}}(r)\frac{r_{\parallel}}{r}\right)^{2}}{2\sigma_{v}^{2}(\mathbf{r})}\right]$$

and with velocity dispersion

$$\sigma_v^2(\mathbf{r}) = \sigma_{\parallel}^2(r) \frac{r_{\parallel}^2}{r^2} + \sigma_{\perp}^2(r) (1 - \frac{r_{\parallel}^2}{r^2})$$

Model:

$$\sigma_{\parallel,\perp}(r) = \sigma_v \left(1 - \frac{1/\sqrt{2}}{1 + r^2/\omega^2} \right)$$

VELOCITY DISPERSION

VELOCITY DISPERSION

ALCOCK-PACZYNSKI TEST

Perform *Alcock-Paczynski test* to constrain cosmological parameters:

- Angular separation $\delta r_{\perp} = D_A(z) \, \delta \Theta$

ALCOCK-PACZYNSKI TEST

Perform Alcock-Paczynski test to constrain cosmological parameters:

Angular diameter distance & Hubble rate (assumed values)

 $D_A(z) = c \int_0^z H^{-1}(z') dz'$, $H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$

Any deviation from the fiducial cosmology causes geometric distortions. \Rightarrow Determine ellipticity ε via

$$\frac{\delta r_{\parallel}}{\delta r_{\perp}} \propto \frac{\boldsymbol{\varepsilon}}{D_A(z)H(z)}$$

RSD ANALYSIS: DENSE MOCK GALAXIES

RSD ANALYSIS: DENSE MOCK GALAXIES

CONCLUSIONS

RSD ANALYSIS: DENSE MOCK GALAXIES

RSD ANALYSIS: SDSS CMASS MOCKS

RSD ANALYSIS: SDSS CMASS MOCKS

RSD ANALYSIS: SDSS CMASS MOCKS COMBINED

CONCLUSIONS

- The best-fit void density profile parameters $(r_s, \delta_c, \alpha, \beta)$ inferred from $\tilde{\xi}_{vg}(\tilde{r}_{\parallel}, \tilde{r}_{\perp})$ are consistent with the 1D-analysis of the real-space density profile $\rho_v(r)$.
- Void density profile parameters $(r_s, \delta_c, \alpha, \beta)$ and cosmological parameters $(\sigma_v, f/b, \varepsilon)$ show no strong degeneracies, as they separately describe the isotropic / anisotropic part of $\tilde{\xi}_{vg}(\tilde{r}_{\parallel}, \tilde{r}_{\perp})$.
- Growth rate f/b and AP parameter ε do not depend on r_v . This allows to place joint constraints from the entire range of void sizes, yielding improvements by factors of a few.
- The low number of sparse galaxies at high redshift can be partly compensated by their higher galaxy bias to yield comparable constraints on f/b and ε .
- The relative uncertainties on f/b and ε achievable in a survey volume of $V = 1h^{-3} \mathrm{Gpc}^3$ range between $\sigma_{f/b} / (f/b) \sim 0.4 0.6$ and $\sigma_{\varepsilon} / \varepsilon = \sigma_{D_AH} / D_A H \sim 0.05 0.08$.

INTRODUCTION

VOIDS IN REAL SPACE

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

QUESTIONS?

CONCLUSIONS

RSD ANALYSIS: SDSS MAIN MOCKS

CONCLUSIONS

RSD ANALYSIS: SDSS MAIN MOCKS

CONCLUSIONS

RSD ANALYSIS: SDSS MAIN MOCKS COMBINED

CONCLUSIONS

RSD ANALYSIS: DARK MATTER VS. DENSE MOCKS

RSD ANALYSIS: DARK MATTER VS. DENSE MOCKS

ALCOCK-PACZYNSKI TEST

VOID PROFILE: PARAMETERS

VOID PROFILE: PARAMETERS

VOID PROFILE: PARAMETERS

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

INTRODUCTION

VOIDS IN REAL SPACE

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOID ABUNDANCE

DENSITY FIELDS

Voids are less clustered and more sparse than galaxies:

CORRELATION FUNCTION

2D CORRELATION FUNCTION

2D CORRELATION FUNCTION

2D CORRELATION FUNCTION

VOID BIAS

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOIDS IN REAL SPACE

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

VOIDS IN REDSHIFT SPACE

CONCLUSIONS

CONCLUSIONS

DEFINITION OF VOIDS

Define density field via Voronoi tessellation of tracer particles

CONCLUSIONS

DEFINITION OF VOIDS

Define density field via Voronoi tessellation of tracer particles

