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What is Dark Matter?

microscopic

negligible cross-section

cold (or at most lukewarm)

continuum limit

vthermal ≪ vbulk

σDM ≪ σem 
collisionless

…and also the dominant gravitating component (~80%)

proton = 1GeV, WIMP 100GeV? -> 1021/g

e.g. thermally produced at very early times, cooled since then

weak-scale or even weaker

at first order, structure formation is well described by assuming all matter is dark matter
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Dark Matter - properties on small scales
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1D behaviour under self-gravity

time

position

cusp forms,

shell-crossing,

but no shock!

velocity velocity

Vanishing collision-term  

⇒ not in hydro limit 
⇒ velocity can be multi-valued 
⇒ cannot stop at low order moments 
⇒ have to discretize distribution function 
⇒ singular caustics emerge
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Dark Matter - fluid flow
Lagrangian description, evolution of fluid element

Q ⇢ R3 ! R6 : q 7! (xq(t),vq(t))

density 
constant

density

⇢ = mDM

����
@xi

@qj

����
�1

For DM, motion of any point q depends only on gravity
(ẋq, v̇q) = (vq,�r�)

�� = 4⇡G⇢

So the quest is to solve Poisson’s equation

unlike hydro, no internal  
temperature, entropy, pressure



Oliver Hahn (ETHZ)GRAVASCO, Oct 14, 2013 Oliver Hahn Garching, July 23, 2015LSS conference

N-body vs. continuum approximation
The N-body approximation:

⇒ EoM are just Hamiltonian N-body eq. (method of characteristics) 

hope that as N->very large numbers, approach collisionless continuum

i 2 {1 . . . N} 7! (xi,vi)

⇢ = mp

X
�D(x� xi)⌦W

for small N, density field is poorly estimated, 

continuum structure is given up, but ‘easy’ to solve for forces
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Problems of the N-body method
discreteness effects with some influence of softening

Clumping/
Fragmentation

Scattering

Most obvious for non-CDM simulations!
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(e.g. Centrella&Melott 1983, Melott&Shandarin 1989, Wang&White 2007)
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Problems of the N-body method: multi-fluid
Main Problem: two-body effects couple particles!

Problem for precision predictions
of high-z baryon distribution

Angulo, Hahn & Abel 2013

two fluids, coupled only through gravity:

@f1,2
@t

+ v ·r
x

f1,2 �r� ·r
v

f1,2 = 0

�� = 4⇡G (⇢1 + ⇢2)

very sensitive to spurious coupling!
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Dark Matter - fluid flow, full manifold description
Lagrangian description, evolution of fluid element

Q ⇢ R3 ! R6 : q 7! (xq(t),vq(t))

Q 2 Pk = {⇡(q) | ⇡(q) =
kX

↵,�,�=0

a↵�� q
↵
0 q

�
1 q

�
2 }

Describe map between Lagrangian and Eulerian space by 
(infinite dimensional) space of tri-polynomials

Exact for             , manifold tracking instead of particlesk ! 1

Lagrangian space Eulerian space

q � xq
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Equations of motion:

6 O. Hahn & R. E. Angulo
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Figure 3. Illustration of the di↵erence between the density induced
from the metric of a bilinear form (a), and that of a simple triangu-
lation (b) of the same quad (1234) under a transformation in which
the top two vertices (1 and 4) are flipped. The bilinear form leads
to a non-convex projection with divergent density at the caustic
point, while, naturally, the triangles remain convex, but have always
constant density and become overlapping.

particles, the flipped and un-flipped state are indistinguishable.
This anisotropy of a simple triangulation exists of course also
in three dimensions. In order to avoid the intrinsic anisotropy
inherent in the Delaunay triangulation of the unit cube, HAK13
have proposed an alternative decomposition of the cube into
eight overlapping tetrahedra instead of six (the decomposition
they employed for the TCM scheme as opposed to the Delaunay
that was used for the T4PM; Figure 3 in HAK13, where the
TCM decomposition can be thought to be rearranged into
one cube). In this paper, whenever we use tetrahedra, we thus
employ the same non-tessellating double-covering of the unit
cube as in HAK13 to avoid an anisotropic decomposition with
tetrahedra.

2.2 Time evolution, discretisation errors and
refinement strategies

Next, we will consider the time evolution of the Lagrangian
elements. We will demonstrate that the evolution equations for
the tri-polynomial elements become separable evolution equa-
tions for the coe�cients that can be solved by simply evolving
the supporting points as freely falling flow tracer particles. The
representation by finite order polynomials however introduces
a truncation error that has to be bounded in order to maintain
the Hamiltonian character of the system. This then leads to
natural refinement criteria that attempt to keep the truncation
error within reasonable limits and are necessary to guarantee
e.g. energy conservation in general.

2.2.1 Time evolution of elements

The phase space density is, as in the N -body case, conserved
along the characteristics given by the canonical equations of
motion (cf. eq. 5) with the only di↵erence that we are no longer
concerned with a discrete set of characteristics but that they
have a manifold structure and thus generalise to

ẋ
q

= v
q

, and v̇
q

= � r
x

�|

xq
, with q 2 Q (12)

along which @f/@t = 0.
The time evolution of the phase space elements can be

obtained from the time derivative of eq. (10), which contains
six time derivatives of polynomials ⇡(q). Since the Lagrangian
coordinates q do not depend on time, we are left with time
derivatives of the coe�cients a

↵��

. Furthermore, consistency
between the supporting points and the coe�cients then requires
that the coe�cients themselves follow canonical equations, i.e.

ẋ
↵��

= v
↵��

, v̇
↵��

= �J

�1f
↵��

, (13)

where J

ij

⌘ @x

i

/@q

j

is the Jacobian and f = r
q

� is the force
mapped to Lagrangian space.

2.2.2 Discretisation errors

The time evolution above is exact if the series expansion is not
truncated (i.e. for k ! 1). When approximating the evolution
equations above by piecewise polynomial expansions, a trun-
cation error is however introduced since the force field across
an element is only considered to the order of the polynomial
expansion. The force across the element is in general however
given as

F
q

=
1X

↵,�,�=0

f
↵��

q

↵

0

q

�

1

q

�

2

, (14)

so that the elements capture correctly the evolution of the first
(k+1)3 terms, and the error in the momentum update is given
by

�v̇ = �J

�1

1X

↵,�,�=k+1

f
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q
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0

q

�

1

q

�

2

, (15)

which implies that second order terms are sourced by a non-
constant tidal field across the element, third order terms by a
non-linearly changing tidal field and so on. This implies that
momentum is only conserved at the level of this truncation
error. The error is expected to be small when the potential
is smooth across elements, which is usually true when the
elements are small, but is certainly an invalid assumption at
later times. Estimating the magnitude of terms of order k + 1
and larger across elements thus naturally leads to a refinement
criterion, so that when an element is split into smaller elements,
the truncation error remains bounded. We will elaborate on
this possibility next.
Refining on force: As we have just discussed, errors arise when
the variation of the gravitational force across the element is not
accurately captured. To turn this error source into a criterion
for adaptive refinement, we calculate the force at using two
di↵erent orders of the interpolating polynomial, i.e. we calculate

F
q

=
kX
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f
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k
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(16)

with k

0
> k, then we can estimate the maximum relative force

error and attempt to keep it bounded

�f ' max
q

��F
q

� F0
q

��
/ kF

q

k < �f

max

/2`, (17)

where ` = 0, 1, . . . is the refinement level of the element. Specif-
ically, in our implementation, we choose k

0 = 2k and chose
not to determine the maximum but approximate the problem
by evaluating �f at half-points, i.e. at the locations where

c� 0000 RAS, MNRAS 000, 000–000
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, with i 2 N
N-body characteristics

Characteristics on Lagrangian manifold

Polynomial expansion of EoM leads to EoM for coefficients
ẋ↵�� = v↵�� , v̇↵�� = �⇢�1

f↵�� , ↵,�, � 2 N

finite expansion at order k leads to the following truncation error:

�v̇ = �⇢�1
1X

↵,�,�=k+1

f↵�� q
↵
0 q

�
1 q

�
2

sourced by high order derivatives of the force field across the element

-> need to keep bounded to keep energy conservation bounded 
-> refinement essential!
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Lagrangian elements of order k
Finite order maps:

cost:
truncation error

in EoM!

⇢ = mDM

����
@xi

@qj

����
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particle locations

time

Oliver Hahn

Describing the density field & softening I

IAU308 Tallinn, 06/23/2014

q1↦(x,v)

q3↦(x,v)
q2↦(x,v)

q1↦(x,v)

q3↦(x,v)
q2↦(x,v)

⇢ = mp

X
�D(x� xi)⌦W

⇢ = mp

X

streams

����det
@xi

@qj

����
�1

Oliver Hahn Tokyo, June 12, 2015IPMU Seminar



analysis
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Three dimensions

Same simulation data! (Abel, Hahn, Kaehler 2012)

rendering points for particles. rendering tetrahedral phase space cells.
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Derivatives of the bulk velocity field

• Discontinuities make ordinary derivatives  
ill-defined without coarse-graining! 

• Away from discontinuities: 
Need to explicitly evaluate action of derivative 
on projected field:

• Vorticity for std. gravity pure  
multi-stream phenomenon!!  

• At discontinuities: 
Derivatives are singular, but have finite measure.

compressive singularities 
at caustics (=motion of caustics)
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Properties of the cosmic velocity field II

Hahn et al. 2014a
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Spectral properties of the cosmic velocity field I
CDM

• Faster convergence (for WDM: convergence!)

• Better small scale properties



simulations
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Describing the density field & softening II

⇢ = mp

X
�D(x� xi)⌦W

⇢ = mp

X

streams

����det
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�1

need softening,  
no knowledge what it  
should be (empirical?) self-adaptive

what are the evolution equations for W?  
= evolution of the local manifold!
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300eV toy WDM problem
fixed mass resolution, varying force resolution:
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sheet tesselation 
based method cures 
artificial fragmentation

force res.

features become sharper 
fragmentation appears

std PM

sheet 
monopole

sheet 
quadrupole

but halos  
become too dense!



refinement + higher order!

tesselated cube orbiting  
in non-harmonic potential

adaptively refined tri-quadratic 
phase-space element

first alternative to N-body in highly non-linear regime!

hi-res N-body 

Hahn & Angulo 2015+ able to track fine-grained phase space 
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i. quadratic interpolant for refinement ii. quartic interpolant for refinement iii. high-res N-body solution

t=24, Θ=0.1

∆E/E=5e-4∆E/E=2e-3

i. quadratic interpolant for refinement ii. quartic interpolant for refinement iii. high-res N-body solution

t=24, Θ=0.1

∆E/E=5e-4∆E/E=2e-3

i. quadratic interpolant for refinement ii. quartic interpolant for refinement iii. high-res N-body solution

t=24, Θ=0.1

∆E/E=5e-4∆E/E=2e-3

Final results with refinement

Hahn & Angulo 2015

Θ=0.05Θ=0.1
i. tetrahedra

ii. tri-linear

iii. tri-quadratic

t=12
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How noisy are N-body sims?

Hahn & Angulo 2015

tri-quadratic reconstructed from N-body 323

tri-quadratic 323 self-consistent

a. N-body 323

c. tri-linear 323 d. tri-quadratic 323

e. high-res N-body 5123

b. tetrahedra 323
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cosmological simulations w/ refinement

Hahn & Angulo 2015

N-body tetrahedra

tri-linear tri-quadratic

tri-quadratic + 1 level ref. tri-quadratic + 3 level ref.
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First determination of WDM halo mass function!

Angulo, Hahn & Abel 2013
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Towards the WDM mass function...

Very dense cores of filaments, linking the halo structures

More work has to be done to understand structure formation.

what do baryons do in such a universe? we don’t know yet!

...halo finding becomes challenging
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Structures at different masses...

Are at different stages of formation...
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Conclusions

• Lagrangian elements can give new insights into existing simulations  

(density/velocity fields, multi-stream analysis,…) 

• Provide also self-consistent simulation technique.  

(functional when using high-order and adaptive refinement) 

• Solves fragmentation problems of N-body 

• requires refinement to ensure energy conservation 

• First methodological test of N-body in deeply non-linear regime 

• Stay tuned for halo properties…


