Dark Matter with Phase Space Elements

Oliver Hahn

Laboratoire Lagrange, Observatoíre de la Côte d'Azur, Nice, France
(()) ()bservatoire
with Raul Angulo (CEFCA), Tom Abel (Stanford), Ralf Kaehler (SLAC)

What is Dark Matter?

microscopic
continuum limit
proton $=1 \mathrm{GeV}, \mathrm{WIMP} 100 \mathrm{GeV} ?->10^{21} / \mathrm{g}$
cold (or at most lukewarm) $\longrightarrow \quad V_{\text {thermal }} \ll V_{\text {bulk }}$
e.g. thermally produced at very early times, cooled since then
negligible cross-section

$\sigma_{D M} \ll \sigma_{e m}$
collisionless
...and also the dominant gravitating component (~80\%)
at first order, structure formation is well described by assuming all matter is dark matter

Dark Matter - properties on small scales

1D behaviour under self-gravity

Dark Matter - fluid flow

Lagrangian description, evolution of fluid element

$$
\mathbb{Q} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{6}: \mathbf{q} \mapsto\left(\mathbf{x}_{\mathbf{q}}(t), \mathbf{v}_{\mathbf{q}}(t)\right)
$$

For DM, motion of any point \mathbf{q} depends only on gravity

$$
\left(\dot{\mathbf{x}}_{\mathbf{q}}, \dot{\mathbf{v}}_{\mathbf{q}}\right)=\left(\mathbf{v}_{\mathbf{q}},-\boldsymbol{\nabla} \phi\right)
$$

unlike hydro, no internal temperature, entropy, pressure
So the quest is to solve Poisson's equation

$$
\Delta \phi=4 \pi G \rho
$$

N-body vs. continuum approximation

The N -body approximation:

$$
i \in\{1 \ldots N\} \mapsto\left(\mathbf{x}_{i}, \mathbf{v}_{i}\right)
$$

\Rightarrow EoM are just Hamiltonian N -body eq. (method of characteristics)
for small N , density field is poorly estimated,

$$
\rho=m_{p} \sum \delta_{D}\left(x-x_{i}\right) \otimes W
$$

continuum structure is given up, but 'easy' to solve for forces
hope that as \mathbf{N}->very large numbers, approach collisionless continuum

Problems of the N-body method

discreteness effects with some influence of softening

Most obvious for non-CDM simulations!
(e.g. Centrella\&Melott 1983, Melott\&Shandarin 1989, Wang\&White 2007)

Problems of the N-body method: multi-fluid

Main Problem: two-body effects couple particles!

two fluids, coupled only through gravity:

$$
\begin{array}{r}
\frac{\partial f_{1,2}}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f_{1,2}-\nabla \phi \cdot \nabla_{\mathbf{v}} f_{1,2}=0 \\
\Delta \phi=4 \pi G\left(\rho_{1}+\rho_{2}\right)
\end{array}
$$

very sensitive to spurious coupling!

Problem for precision predictions of high-z baryon distribution

Dark Matter - fluid flow, full manifold description

Lagrangian description, evolution of fluid element

$$
\mathbb{Q} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{6}: \mathbf{q} \mapsto\left(\mathbf{x}_{\mathbf{q}}(t), \mathbf{v}_{\mathbf{q}}(t)\right)
$$

Describe map between Lagrangian and Eulerian space by (infinite dimensional) space of tri-polynomials

$$
Q \in P_{k}=\left\{\pi(\mathbf{q}) \mid \pi(\mathbf{q})=\sum_{\alpha, \beta, \gamma=0}^{k} a_{\alpha \beta \gamma} q_{0}^{\alpha} q_{1}^{\beta} q_{2}^{\gamma}\right\}
$$

Exact for $k \rightarrow \infty$, manifold tracking instead of particles

Equations of motion:

N -body characteristics

$$
\dot{\mathbf{x}}_{i}=\mathbf{v}_{i}, \quad \text { and } \quad \dot{\mathbf{v}}_{i}=-\left.\nabla_{x} \phi\right|_{\mathbf{x}_{i}}, \quad \text { with } i \in \mathbb{N}
$$

Characteristics on Lagrangian manifold

$$
\dot{\mathbf{x}}_{\mathbf{q}}=\mathbf{v}_{\mathbf{q}}, \quad \text { and } \quad \dot{\mathbf{v}}_{\mathbf{q}}=-\left.\boldsymbol{\nabla}_{x} \phi\right|_{\mathbf{x}_{\mathbf{q}}}, \quad \text { with } \mathbf{q} \in \mathcal{Q}
$$

Polynomial expansion of EoM leads to EoM for coefficients

$$
\dot{\mathbf{x}}_{\alpha \beta \gamma}=\mathbf{v}_{\alpha \beta \gamma}, \quad \dot{\mathbf{v}}_{\alpha \beta \gamma}=-\rho^{-1} \mathbf{f}_{\alpha \beta \gamma}, \quad \alpha, \beta, \gamma \in \mathbb{N}
$$

finite expansion at order k leads to the following truncation error:

$$
\Delta \dot{\mathbf{v}}=-\rho^{-1} \sum_{\alpha, \beta, \gamma=k+1}^{\infty} \mathbf{f}_{\alpha \beta \gamma} q_{0}^{\alpha} q_{1}^{\beta} q_{2}^{\gamma}
$$

sourced by high order derivatives of the force field across the element
-> need to keep bounded to keep energy conservation bounded
-> refinement essential!

Lagrangian elements of order k

Finite order maps:

Describing the density field \& softening I

$$
\underset{\bullet}{\mathrm{q}_{\bullet} \mapsto(\mathrm{x}, \mathrm{v})}
$$

-

$$
\rho=m_{p} \sum \delta_{D}\left(x-x_{i}\right) \otimes W \quad \quad \rho=m_{p} \sum_{\text {streams }}\left|\operatorname{det} \frac{\partial x_{i}}{\partial q_{j}}\right|^{-1}
$$

time
analysis

Three dimensions

Same simulation data! (Abel, Hann, Kaehler 2012)

Derivatives of the bulk velocity field

- Discontinuities make ordinary derivatives ill-defined without coarse-graining!
- Away from discontinuities: Need to explicitly evaluate action of derivative on projected field:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot\langle\mathbf{v}\rangle & =\langle(\boldsymbol{\nabla} \log \rho) \cdot(\mathbf{v}-\langle\mathbf{v}\rangle)\rangle+\langle\boldsymbol{\nabla} \cdot \mathbf{v}\rangle \\
\boldsymbol{\nabla} \times\langle\mathbf{v}\rangle & =\langle(\boldsymbol{\nabla} \log \rho) \times(\mathbf{v}-\langle\mathbf{v}\rangle)\rangle+\langle\boldsymbol{\nabla} \times \mathbf{v}\rangle
\end{aligned}
$$

- Vorticity for std. gravity pure multi-stream phenomenon!!
- At discontinuities:

Derivatives are singular, but have finite measure.

compressive singularities at caustics (=motion of caustics)

Properties of the cosmic velocity field II

Spectral properties of the cosmic velocity field I

- Faster convergence (for WDM: convergence!)
- Better small scale properties

simulations

Describing the density field \& softening II

$$
\begin{aligned}
\rho=m_{p} \sum \delta_{D}\left(x-x_{i}\right) \otimes W & \rho=m_{p} \sum_{\text {streams }}\left|\operatorname{det} \frac{\partial x_{i}}{\partial q_{j}}\right|^{-1} \\
\quad \begin{array}{c}
\text { need softening, } \\
\text { no knowledge what it } \\
\text { should be (empirical?) }
\end{array} & \text { self-adaptive }
\end{aligned}
$$

what are the evolution equations for W?
= evolution of the local manifold!

300 eV toy WDM problem

fixed mass resolution, varying force resolution:

force res.
features become sharper fragmentation appears
sheet tesselation based method cures artificial fragmentation
but halos become too dense!

refinement + higher order!

Final results with refinement

How noisy are N-body sims?

tri-quadratic 32^{3} self-consistent

Hahn \& Angulo 2015

cosmological simulations w/ refinement

First determination of WDM halo mass function!

Towards the WDM mass function...

...halo finding becomes challenging

Very dense cores of filaments, linking the halo structures

More work has to be done to understand structure formation. what do baryons do in such a universe? we don't know yet!

Structures at different masses...

Conclusions

- Lagrangian elements can give new insights into existing simulations (density/velocity fields, multi-stream analysis, ...)
- Provide also self-consistent simulation technique.
(functional when using high-order and adaptive refinement)
- Solves fragmentation problems of N -body
- requires refinement to ensure energy conservation
- First methodological test of N -body in deeply non-linear regime
- Stay tuned for halo properties...

