# Anisotropic Clustering Measurements using Fourier Space Wedges and the status of the BOSS DR12 analysis

#### Jan Niklas Grieb



Max-Planck-Institut für extraterrestrische Physik, Garching bei München

Universitäts-Sternwarte München, Ludwig-Maximilians-Universität München

### July 20th, 2015

collaborators: A. Sánchez, F. Montesano, S. Salazar, R. Scoccimarro, M. Crocce, C. Dalla Vechia, and the Galaxy Clustering working group

## Outline



- 2 Anisotropic Clustering in Fourier Space
- Ovariance Matrices for Cubes and Cut-Sky Catalogs
- 4 Verification of the new RSD Model
- 5 BOSS DR12 status





## Motivation: Anisotropic Analysis of Galaxy Clustering

## Aim for the BOSS Analysis

- Excellent large spectroscopic galaxy sample
- Baryonic Acoustic Oscillations imprint in galaxy clustering signal



source: [F. Montesano]

- BAO serves as standard ruler
- probe of expansion history

Jan Grieb (MPE, Garching)

#### Fourier Space Wedges

### Line-of-Sight Decomposition

• *z*-space matter clustering is inherently anisotropic



$$D_A(z) = \frac{s_\perp}{\Delta \alpha (1+z)}$$
  
and  $H(z) = \frac{c \Delta z}{s_{||}}$ 

Jul 20th, 2015

## Extend Clustering Wedges to Fourier Space



$$P(k,\mu) = \langle \delta(k,\mu)\delta^*(k,\mu) \rangle$$

• bad  $\frac{S}{N}$  for fine  $\mu$ -bins!

#### **Power Spectrum Wedges**

- $P(\mu, k)$  averaged over wide bins in  $\mu$
- harmonized S/N

• 
$$P_{\mu_1,\mu_2}(k) \equiv \frac{1}{\mu_2 - \mu_1} \int_{\mu_1}^{\mu_2} P(\mu, k) \, \mathrm{d}\mu$$

- simple window function description  $\mu = \cos(\theta)$
- transverse projection  $P_{\perp}(k) \equiv P_{0,\frac{1}{2}}(k)$
- line-of-sight projection  $P_{\parallel}(k) \equiv P_{\frac{1}{2},1}(k)$





## Extend Clustering Wedges to Fourier Space



$$P(k,\mu) = \langle \delta(k,\mu)\delta^*(k,\mu) \rangle$$

• bad  $\frac{S}{N}$  for fine  $\mu$ -bins!

#### **Power Spectrum Wedges**

- $P(\mu, k)$  averaged over wide bins in  $\mu$
- harmonized S/N

• 
$$P_{\mu_1,\mu_2}(k) \equiv \frac{1}{\mu_2 - \mu_1} \int_{\mu_1}^{\mu_2} P(\mu, k) \, \mathrm{d}\mu$$

- simple window function description  $\mu = \cos(\theta)$
- S/N even high enough for three wedges

• 
$$P_{3w,i}(k) \equiv P_{\frac{i-1}{3},\frac{i}{3}}(k)$$



## Measurements of Anisotropic Clustering

#### Yamamoto estimator

- pairwise LOS depends on observer and galaxy pair
- double sum over objects [Yamamoto et al. '05]
- *impossible* scaling  $N_k (N_{gal}^2 + N_{rnd}^2)!$



[Samushia et al. '15]



## Measurements of Anisotropic Clustering

#### Yamamoto-Blake estimator

- per-object-LOS approximation instead of pairwise LOS
- single direct sum [Blake et al. '11]
- wide-angle bias for low-z and  $\ell \geq 4$  [Samushia et al. '15]





## Yamamoto estimator for Fourier space wedges I

#### Yamamoto Estimator for Clustering Wedges

- extend Yamamoto estimator to any number of wedges
- replace Legendre polynomials by  $\mu$ -top-hat functions
- wedge (or multipole) overdensity field

$$F_{a} = \frac{1}{\sqrt{A}} \left[ D_{a}(k) - \alpha R_{a}(k) \right]$$

weighted sum over galaxies and randoms  $(1/\alpha \text{ more numerous})$ :

$$D_{a}(k) = \sum_{i} w_{i} e^{i\mathbf{k}\cdot\mathbf{x}_{i}} \Theta_{a}(\mu_{ki}),$$
  

$$R_{a}(k) = \sum_{j} w_{j} e^{i\mathbf{k}\cdot\mathbf{x}_{j}} \Theta_{a}(\mu_{kj})$$

 $\theta_a(\mu)$ : top-hat for this wedge, with argument  $\mu_{ki} := \frac{k \cdot x_i}{|k||x_i|}$ . • spoils use of FFTs!?

Jan Grieb (MPE, Garching)



Conclusions

## Yamamoto estimator for Fourier space wedges II

• wedge power spectrum computed as:

$$P_a(k) = F_a(k)F_0(k)^* - \frac{S_a}{A}$$

- normalization  $A := \alpha \sum_{j} \bar{n}_{j} w_{j}^{2}$  (just as for FKP),  $\bar{n}_{j}$ : the estimated number density of galaxies.
- shot noise  $S_a(k) = \alpha(\alpha + 1) \sum_j w_j^2 \Theta_a(\mu_{kj})$

#### for polynomial $\mu$ dependence:

• fast FFT-scheme for  $P_{\ell}(\mu)$  developed [Bianchi et al. '15, Scoccimarro '15]

• 
$$\mu^2 = \sum_{ij} \frac{x_i x_j}{x^2} \frac{k_i k_j}{k^2} \longrightarrow 6$$
 combinations

• *unbeatable* scaling 6  $N_{\rm fft}$  log  $N_{\rm fft}$  instead of  $N_k (N_{\rm gal} + N_{\rm rnd})$ 



## FFT-based Clustering Wedges Estimation



- $P_{\ell}(k)$  by Yamamoto-FFT estimator (EUCLID comparison project)
- transform to wedges by

$$P_{\mu_1}^{\mu_2}(k) = \frac{1}{\mu_2 - \mu_1} \sum_{\ell \in \{0, 2, 4\}} P_{\ell}(k) \int_{\mu_1}^{\mu_2} \mathcal{L}_{\ell}(\mu) \, \mathrm{d}\mu$$



Jan Grieb (MPE, Garching)

Fourier Space Wedges

## A First Look at the Data: BOSS DR12 sample





#### The Effect of the Window Function

• Convolution with wedge window function (assuming isotropy) – in analogy to monopole:

$$P_{a}^{\text{conv}}(k) = \int d^{3}\boldsymbol{k}' \left[ P_{a}^{\text{model}}(k') W_{a}^{2}(|k\hat{\boldsymbol{e}}_{z} - \boldsymbol{k}'|) - \frac{W_{a}^{2}(k)}{W_{0}^{2}(0)} P_{0}^{\text{model}}(k') W_{0}^{2}(k') \right].$$

(second term: integral constraint)



MPE

Jan Grieb (MPE, Garching)

Fourier Space Wedges

Jul 20th, 2015

## **Covariance estimation for Clustering Wedges**

- Estimate  $P_a(k_i)$ -covariance  $C_{ab}(k_i, k_j)$  either
  - theoretically derived (smooth, model required) or
  - @ measured from a large set of synthetic catalogues (noisy)

### Full N-body Minerva simulations

- Verification of covariance estimate (and RSD modelling)
- 100 realizations,  $V = 3.37 (\text{Gpc}/h)^3$
- HOD galaxies at z = 0.57 mimicking CMASS sample (similar n
   and clustering)



## The Covariance Matrix for Fourier-Space Wedges



- For a cubic box, Fourier modes
   P(k, μ) are uncorrelated on large scales
- Variance can be constructed by a Gaussian model using an RSD power spectrum [JG et al. '15a (in prep.)]

• volume-average for each power spectrum bin  $\int_{k_1}^{k_2} d^3k \dots$ 



Jan Grieb (MPE, Garching)

Fourier Space Wedges

Jul 20th, 2015

## Synthetic Catalogues as Covariance Estimate

- noise in covariance propagates to the final constraints [Percival et al. '14]
- accurate constraints require  $\mathcal{O}(10^3)$  of synthetic catalogs (mocks)
- quick generation: non-linear evolution w/ fast approximative schemes
- mimicking full survey including veto regions and fibre collisions





Jan Grieb (MPE, Garching)

60000 50000 0.2 < z < 0.5

40000

30000

20000

1000

60000

50000

40000

30000

20000

S/N<sup>2</sup> (0.02 h/Mpc;

3 wedges

2 wedges

< 0.75

3 wedges

2 wedges

0.05

0.15

## The Covariance Matrix for Fourier-Space Wedges

- the survey geometry introduces correlations on the off-diagonals
- fibre collisions also correlate distant bins



Jan Grieb (MPE, Garching)

Fourier Space Wedges

Jul 20th, 2015

## Verification of the modelling

Validation of the new RSD model (to Ariel's talk)

- Verify the modelling of PS wedges with Minerva simulations
- Smallest possible modes  $-k_{max}$  to get unbiased parameters?



- unbiased  $f \sigma_8$  sets limit  $k_{\text{max}} = 0.2 \ h/\text{Mpc}$
- varying the shot noise (prepare for catalogues fits) introduces small  $\alpha_{\perp,||}$  bias
- tighter constraints for 3 wedges



New Results for Cutsky Mocks

## **BOSS Mock Challenge**

- Model performance compared in a blind challenge
- Blind results handed in and analyzed

- Too optimistic choice of  $k_{\max}$
- Need to vary the shot noise



Introduction and Motivation Anisotropic Clustering Covariance Estimation Model Verification BOSS DR12 status Conclusions

## Ready to fit the DR12 galaxy catalog



#### PS fits not ready for the public yet, but...

- model predictions using Ariel's preliminary 2PCF fits
- good agreement between Fourier and configuration space
- be patient until the release!



## Conclusions

#### i) new RSD model for galaxy clustering

- Major improvement, state-of-the art modelling for analysis both in configuration and Fourier space
- Tested and validated with large-scale simulations

### ii) BOSS Power Spectrum Wedges

- largest volume probed so far for galaxy clustering analysis, optimized data processing and fitting
- intensive work on final analysis
- highest demands: complementary analysis for multipoles and wedges in conf. and Fourier space

 $\mu = \cos(\theta)$ 





## **Outlook! Questions?**

#### Outlook

- Analysis is tremendous team effort
- Onsistency check: configuration and Fourier space
- **O** Unprecedented accuracy can be expected
  - Thank you for your attention!

• Time for all your questions!



## References

#### NOT UP TO DATE!

| ۲ | http://lambda.gsfc.nasa.gov/, http://wmap.gsfc.nasa.gov/                                                                               |
|---|----------------------------------------------------------------------------------------------------------------------------------------|
|   | L. Anderson et al. (BOSS Collaboration),<br>MNRAS 441 (1) 24-62 (2013), arXiv:1312.4877                                                |
|   | R. Angulo, C. Baugh, C. Frenk, and C. Lacey,<br>Mon.Not.Roy.Astron.Soc., 383, 755 (2008), arXiv:astro-ph/0702543                       |
|   | F. Beutler et al. (BOSS Collaboration)<br>(2013), arXiv:1312.4611                                                                      |
|   | J. Hartlap, P. Simon, and P. Schneider<br>Astron.Astrophys. (2006), arXiv:astro-ph/0608064                                             |
|   | Komatsu, E. et al.<br>ApJS, 192, 18 (2011), arXiv:1001.4538 [astro-ph.CO]                                                              |
|   | L. Samushia, E. Branchini, and W. Percival,<br>(2015), arXiv:1504.02135                                                                |
|   | A. G. Sánchez, E. A. Kazin, F. Beutler, et al. (BOSS Collaboration)<br>MNRAS 433 (2) 1202-1222 (2013), arXiv:1303.4396 [astro-ph.CO]   |
|   | A. G. Sánchez, F. Montesano, E. A. Kazin, et al. (BOSS Collaboration)<br>MNRAS 440 (3) 2692-2713 (2013), arXiv:1312.4854 [astro-ph.CO] |



## Angular Diameter Distance and the BAO

• Angular Diameter Distance,

$$D_A(z) = c \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

• Sound Horizon,

$$r_s = \int_0^{t_{
m dec}} rac{c_s(t')\,{
m d}t'}{a(t')}$$
 ,  
known from CMB measurements

 $(r_s = 147 \; \mathrm{Mpc} \; [\mathrm{Komatsu \; et \; al. \; '11}])$ 

• From the BAO position, we can get  $(r_{AB} = r_s)$  $\theta_{BAO} = \frac{1}{1+z} \frac{r_s}{D_A(z)}$  $\Delta z_{BAO} = \frac{r_s H(z)}{c}$ 





References

## Dependence of Geometry on Cosmology

- Fiducial cosmology of simulations:  $w = w_{\text{true}} = -1$
- Assumed cosmology from measurement:  $w_{assumed} = w_{true} + \Delta w$
- Mismatch causes geometry of the late universe to be misinterpreted
- Relates to change  $\alpha = k_{app}/k_{true}$  [Angulo et al. '08]  $\alpha_{\perp} = \frac{D_A(z, w_{assumed})}{D_A(z, w_{true})}, \quad \alpha_{\parallel} = \frac{H(z, w_{true})}{H(z, w_{assumed})}$  $\alpha \approx \alpha_{\perp}^{-2/3} \alpha_{\parallel}^{1/3}$

 $D_A$  angular diameter distance, H Hubble parameter  $D_A$  and the BAO

- Goals:  $\langle \alpha 
  angle = 1$  (no bias),  $\langle |\Delta \alpha| 
  angle \ll 1$  (high precision)
- $\Delta \alpha$  and  $\Delta w$  of same magnitude



#### References

## Estimation of Model Parameters using MCMC

• Likelihood function for *mean* power spectrum wedges  $\bar{P}_{\parallel,\perp}(k)$ , measured at wavenumber bins  $k_i$ :  $\mathcal{P}(\bar{P}|A) \sim \exp[-\chi^2(\bar{P}|A)/2]$  where

$$\chi^{2}(\bar{P}|\theta) = \sum_{x,y,i,j} \left[ \bar{P}_{x}(k_{i}) - P_{x,rpt}(k_{i}) \right] C_{xyij}^{-1} \left[ \bar{P}_{y}(k_{j}) - P_{y,rpt}(k_{j}) \right]$$

• covariance matrix estimated from set of realizations

$$C_{xyij} = \langle \left[ P_x(k_i) - \bar{P}_x(k_i) \right] \left[ P_y(k_j) - \bar{P}_y(k_j) \right] \rangle$$

- inverse corrected for noise [Hartlap et al. '06]
- step through parameter space using Markov chain Monte Carlo

