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VIMOS Public Extragalactic Redshift Survey
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★ VIPERS aims
★ Sample L* galaxies in a representative 

volume at 0.5 < z < 1.2

➡ Cosmological constraints from galaxy 
clustering and redshift-space distortions

➡ Evolution of galaxy physical properties as a 
function of environment

z~0.05
to

z~1

6dFGS 1 m
SDSS 2 m

2dFGRS 4 m
VIPERS 8 m

Ideal combination of sampling and 
volume for LSS morphology



VIPERS in summary
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GAMA

WiggleZ

BOSS

Number density

★ Flux limit iAB < 22.5
★ ~90 000 redshifts
★ Area: 24 square degrees
★ Volume: 0.05 h-3Gpc3

★ Density: 8x10-3 h3Mpc-3

➡ Guzzo et al (2014)
➡ Garilli et al (2014)
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(Here in Garching)



Team VIPERS
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Edinburgh, September 2012



A quick review  
of VIPERS results

★ Fourier-space analyses  
& cosmological interpretation

★ Growth rate and redshift-space clustering

★ Density field reconstructions

★ Cosmic voids
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S. Rota et al.: Cosmological constraints from the VIPERS galaxy power spectrum

different WFs), but treating separately the two redshift
bins due to the different bias parameter in z1 and z2.
The fit is performed over the k-range
0.01 < k < 0.3 hMpc−1 with linear binning size of
∆k = 0.01 hMpc−1. The choice of pushing the upper limit
to kmax = 0.3 hMpc−1 is justified by our numerical exper-
iments (sect. XXX), which show how the higher redshift
of VIPERS reduces the impact of non-linearities. This will
be particularly evident when comparing the independent
estimates from the two low- and high-z samples. The effect
of choosing a more conservative value for kmax is further
discussed in detail in Appendix C.2.

Using the covariance matrix measured in 5.1 and com-
bining the results from the two redshift bins in the two
fields (HOW?), we obtain the global likelihood surfaces
in the ΩM − fB plane shown in figure 10 (do plot with
same scale as Wigglez? (Blake 2010), which has sim-
ilar behaviour to us. Also, do a 3rd figure compar-
ing Omega*h vs fB, as done in 2dFGRS paper?).
Figure 7, instead, shows the same contours, but consider-
ing separately the two redshift bins 0.6 < z < 0.9 (red) and
0.9 < z < 1.1 (blue). Note the degeneracy with a high-fB
solution that is allowed by the z ∼ 0.75 data and that was
also present in the local measurements of SDSS and 2dF-
GRS. Conversely, this is excluded by the higher-z sample
of VIPERS.

Figure 10. Combined likelihood surfaces for the model fits
to the four power spectra estimated within the two redshift
ranges 0.6 < z < 0.9 and 0.9 < z < 1.1 in W1 and W4.
Contours correspond to two-parameter confidence levels of
68, 95 and 99 per cent (TBD - CHECK!) The power
spectrum data are included down to scales corresponding
to a kmax = 0.3h Mpc−1 (are we sure we want to stick
to that?). We have marginalised over the bias factor. The
cross corresponds to the best-fit values, while the diamond
gives the latest Planck values (REFERENCE).

We also combine the posterior likelihoods in z1 and z1 to
estimate the degeneracy in the matter density and baryonic
fraction plane (green region in figure 11) obtained from
the full VIPERS sample, after marginalising over the bias
factor. The best fit for the matter density, obtained after
marginalising over the baryonic fraction, is ΩM = 0.32+0.08

−0.10,
while for the baryonic fraction, after marginalising
over the matter density, we measure fB = 0.17+0.09

−0.08 .
These results are consistent with the Planck value
of ΩM = 0.3175 and fB = ΩB/ΩM = 0.049/0.3175∼ 0.15
(Planck Collaboration et al. 2013) within statistical uncer-
tainties.

Figure 11. Likelihood surfaces as in Figure 10, but consid-
ering separately the two redshift ranges, i.e. 0.6 < z1 < 0.9
(red), and 0.9 < z2 < 1.1 (blue). Note the strongest degen-
eracy in the high-z bin. Would it be useful also to show
what happens when considering W1 and W4 separ-
ately?

6.3. Comparison with previous VIPERS results

Given the strong degeneracy between the baryonic frac-
tion and the matter density in the determination of the
overall shape of the matter power spectrum, we decide to
extract only the ΩM parameter fixing the fB quantity to
known prior. For the estimation of ΩM , we run an MCMC
for each redshift bin, z1 and z2, combining the chi-square of
the two fields. We assume a ΛCDM cosmology with the the
accelerated expansion caused by a cosmological constant
term with w = −1 and flat space Ωk = 0. We allow to vary,
in our power spectrum modelling, some cosmological para-
meters fixing Gaussian prior to the best available estima-
tion as the spectral index, ns = 0.9616± 0.0094, and scalar
amplitude, ln(1010As) = 3.103± 0.072, from Planck results
(Planck Collaboration et al. 2013), the Hubble constant
h = 0.738± 0.024 from the measurements of the Hubble
Space Telescope (HST, Riess et al. 2011) and the baryonic
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ben.granett@brera.inaf.it Cosmology in the Planck Era, Quy Nhon, 29 July, 2013 http://vipers.inaf.it

CFHT Legacy Survey

7

8º

• Use the full CFHTLS to study VIPERS-like galaxies over a large volume

• Wide survey: 133 sqr deg;  Volume ~ 1/3 SDSS main sample (z<1.2, iAB<22.5)

38m

• Angular power spectrum: Granett et al (2012)
• HOD modeling: Coupon et al (2012)
• Higher order statistics:  Wolk et al (2013)

mailto:ben.granett@brera.inaf.it
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VIMOS at ESO Very Large Telescope
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VLT at Paranal

VIsible Multi-Object Spectrograph (VIMOS)  
Le Fevre (2003)
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VIPERS colour pre-selection

★ Color selection removes low redshift galaxies

★ Reaches ~100% complete flux-limited sample 
at z > 0.6

★ Boosts sampling rate 0.5 < z < 1.2

★ Additional AGN selection criteria
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VIPERS Colour-Colour selection: isolating z>0.5 
galaxies with VVDS calibration 

 
•  Colour sampling rate = 1 for 

z>0.6 

•  Transition range 0.4<z<0.6 
(due to mag errors and 
intrinsic scatter in color-
redshift relation) 

•  Selection function in the 
transition reconstructed 
using complete VVDS data, 
but there are subtleties 
(CFHTLS zero-point tile-to-
tile fluctuations) 

•  Data in this range can be 
used for some analyses but 
not for others 

 
0              0.5            1.0             1.5
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Field W1

Field W4

100 Mpc/h

z=0.9
z=0.5

A. Iovino



Slit exclusion effects

★ Single-pass observations

★ Spectra cannot overlap on the focal 
plane

★ Suppression of the correlation function 
on all scales
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Target sampling rate
★ The sampling rate depends on local density

★ undersample high density regions

★ like a thresholding of the density field

★ Mean sampling rate is 40%
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(not the full sample)



Mock samples

★ Many realisations of mock surveys are essential
★ Investigate systematics
★ Estimate sample covariance

★ VIPERS suite of mocks built with:
★ Pinocchio (Monaco)
★ Multidark (Prada et al)

★ Galaxies added with HOD technique  
with luminosity and colour 
(de la Torre et al 2013)

★ Halos are added below the mass limit  
(de la Torre & Peacock 2012)
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4 S. de la Torre & J. A. Peacock
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Figure 1. Comparison of the continuous density fields of original (left panels) and reconstructed haloes (right panels) in a slice of 500⇥250⇥15h�3
Mpc

3

from the Millennium simulation, for two cuts in halo mass corresponding to m < 10

11.5 h�1
M� (top panels) and m < 10

11 h�1
M� (bottom panels).

In the m < 10

11.5 h�1
M� case, the reconstruction used a grid of size G = 2.5h�1

Mpc, while in the m < 10

11 h�1
M� case, a grid of size

G = 1h�1
Mpc was used.

of the large-scale halo clustering. We measure the halo bias in the
low-mass regime from the reconstructed halo catalogue. The halo
bias has been estimated by first measuring the halo power spec-
trum P (k) and then taking the square root of the ratio between the
halo power spectrum and that of mass. In this, we assumed the non-
linear mass power spectrum given by CosmicEmu (Lawrence et al.
2010).

The recovered halo biases in mass bins below the resolu-
tion limit are shown in Fig. 3, which compares the results of us-
ing different estimates of the halo density field as well as dif-
ferent biasing models. In this figure, the measured halo bias is
shown as a function of the wavenumber for the three mass bins:
10

10 < m < 10

10.5 h�1
M�, 1010.5 < m < 10

11 h�1
M�,

and 10

11 < m < 10

11.5 h�1
M�. We find that the DT method

as implemented in the DTFE code (Cautun & van de Weygaert
2011) provides better results than the grid-based estimator with
CIC and NGP assignment schemes. The large-scale bias, expected
to asymptote to linear theory predictions, is in very good agree-
ment with the predictions of Tinker et al. (2010) in the case of DT,
whereas for the other methods the bias is clearly overestimated.
This is particularly true in the case of NGP. The DT method better
accounts for local variations in number density, reducing the shot
noise in the reconstruction and giving a better sampling of the most
extreme environments. In the NGP and CIC cases, the significant
shot-noise contributions translate into additional scale-dependent
components in the power spectrum and estimated bias. In this ex-
ercise, we pushed the methods towards their limits by considering
a very small grid size of 2.5h�1

Mpc. However, if we increase the
grid size to 5 � 10h�1

Mpc, the recovered halo biases come to

agreement and we find that the three methods converge to the same
values.

The biasing scheme that enters in the conditional mass func-
tion has also some impact on the recovered halo clustering, in par-
ticular for small grid size density field reconstruction such as the
one considered here. We show in the bottom panel of Fig. 3 the
effect on the recovered halo bias when assuming a linear or power-
law bias model as describe in Section 2.2. In both cases we use the
halo density field reconstructed with the DT method. We find that
the linear model tends to overestimate the large-scale linear bias
for low-mass haloes compared to the power-law model, which in-
stead allows us to recover the linear bias predictions of Tinker et al.
(2010) at the few percent level.

It is noticeable in Fig. 3 that, as is inevitable, one cannot re-
construct the highest k regime of the halo power spectrum. This
however does not really matter for the purpose of galaxy mock con-
struction, since the overall galaxy power spectrum is dominated by
the 1-halo term in this regime, as we will show in the next section.

Another aspect which can be important for creating realistic
halo catalogues is the assignment of velocities to the newly created
haloes. Their velocity should sample the underlying velocity field
which can be estimated from the original haloes. The velocity field
is a volume-weighted quantity and for this reason it is more difficult
to measure than the density field from the set of original haloes. It
has been shown that the DT method is particularly efficient at re-
covering the velocity field and it naturally avoids the velocity field
to be artificially set to zero in regions where there are no haloes,
which can be the case for mass-weighted approaches based for in-
stance on interpolating the velocities to a grid (e.g. Jennings 2012).
The estimated velocity field with DT can thus be used and inter-

c� 2012 RAS, MNRAS 000, 1–6
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Figure 1. Comparison of the continuous density fields of original (left panels) and reconstructed haloes (right panels) in a slice of 500⇥250⇥15h�3
Mpc

3

from the Millennium simulation, for two cuts in halo mass corresponding to m < 10

11.5 h�1
M� (top panels) and m < 10

11 h�1
M� (bottom panels).

In the m < 10

11.5 h�1
M� case, the reconstruction used a grid of size G = 2.5h�1

Mpc, while in the m < 10

11 h�1
M� case, a grid of size

G = 1h�1
Mpc was used.

of the large-scale halo clustering. We measure the halo bias in the
low-mass regime from the reconstructed halo catalogue. The halo
bias has been estimated by first measuring the halo power spec-
trum P (k) and then taking the square root of the ratio between the
halo power spectrum and that of mass. In this, we assumed the non-
linear mass power spectrum given by CosmicEmu (Lawrence et al.
2010).

The recovered halo biases in mass bins below the resolu-
tion limit are shown in Fig. 3, which compares the results of us-
ing different estimates of the halo density field as well as dif-
ferent biasing models. In this figure, the measured halo bias is
shown as a function of the wavenumber for the three mass bins:
10

10 < m < 10

10.5 h�1
M�, 1010.5 < m < 10

11 h�1
M�,

and 10

11 < m < 10

11.5 h�1
M�. We find that the DT method

as implemented in the DTFE code (Cautun & van de Weygaert
2011) provides better results than the grid-based estimator with
CIC and NGP assignment schemes. The large-scale bias, expected
to asymptote to linear theory predictions, is in very good agree-
ment with the predictions of Tinker et al. (2010) in the case of DT,
whereas for the other methods the bias is clearly overestimated.
This is particularly true in the case of NGP. The DT method better
accounts for local variations in number density, reducing the shot
noise in the reconstruction and giving a better sampling of the most
extreme environments. In the NGP and CIC cases, the significant
shot-noise contributions translate into additional scale-dependent
components in the power spectrum and estimated bias. In this ex-
ercise, we pushed the methods towards their limits by considering
a very small grid size of 2.5h�1

Mpc. However, if we increase the
grid size to 5 � 10h�1

Mpc, the recovered halo biases come to

agreement and we find that the three methods converge to the same
values.

The biasing scheme that enters in the conditional mass func-
tion has also some impact on the recovered halo clustering, in par-
ticular for small grid size density field reconstruction such as the
one considered here. We show in the bottom panel of Fig. 3 the
effect on the recovered halo bias when assuming a linear or power-
law bias model as describe in Section 2.2. In both cases we use the
halo density field reconstructed with the DT method. We find that
the linear model tends to overestimate the large-scale linear bias
for low-mass haloes compared to the power-law model, which in-
stead allows us to recover the linear bias predictions of Tinker et al.
(2010) at the few percent level.

It is noticeable in Fig. 3 that, as is inevitable, one cannot re-
construct the highest k regime of the halo power spectrum. This
however does not really matter for the purpose of galaxy mock con-
struction, since the overall galaxy power spectrum is dominated by
the 1-halo term in this regime, as we will show in the next section.

Another aspect which can be important for creating realistic
halo catalogues is the assignment of velocities to the newly created
haloes. Their velocity should sample the underlying velocity field
which can be estimated from the original haloes. The velocity field
is a volume-weighted quantity and for this reason it is more difficult
to measure than the density field from the set of original haloes. It
has been shown that the DT method is particularly efficient at re-
covering the velocity field and it naturally avoids the velocity field
to be artificially set to zero in regions where there are no haloes,
which can be the case for mass-weighted approaches based for in-
stance on interpolating the velocities to a grid (e.g. Jennings 2012).
The estimated velocity field with DT can thus be used and inter-

c� 2012 RAS, MNRAS 000, 1–6



Fourier-space analysis

★ Stefano Rota+ (in prep) measures the 
galaxy power spectrum in redshift bins

★ Cosmological interpretation of the 
monopole

★ Julien Bel’s talk (afternoon)
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S. Rota (in prep)

Monopole

S. Rota et al.: Cosmological constraints from the VIPERS galaxy power spectrum

different WFs), but treating separately the two redshift
bins due to the different bias parameter in z1 and z2.
The fit is performed over the k-range
0.01 < k < 0.3 hMpc−1 with linear binning size of
∆k = 0.01 hMpc−1. The choice of pushing the upper limit
to kmax = 0.3 hMpc−1 is justified by our numerical exper-
iments (sect. XXX), which show how the higher redshift
of VIPERS reduces the impact of non-linearities. This will
be particularly evident when comparing the independent
estimates from the two low- and high-z samples. The effect
of choosing a more conservative value for kmax is further
discussed in detail in Appendix C.2.

Using the covariance matrix measured in 5.1 and com-
bining the results from the two redshift bins in the two
fields (HOW?), we obtain the global likelihood surfaces
in the ΩM − fB plane shown in figure 10 (do plot with
same scale as Wigglez? (Blake 2010), which has sim-
ilar behaviour to us. Also, do a 3rd figure compar-
ing Omega*h vs fB, as done in 2dFGRS paper?).
Figure 7, instead, shows the same contours, but consider-
ing separately the two redshift bins 0.6 < z < 0.9 (red) and
0.9 < z < 1.1 (blue). Note the degeneracy with a high-fB
solution that is allowed by the z ∼ 0.75 data and that was
also present in the local measurements of SDSS and 2dF-
GRS. Conversely, this is excluded by the higher-z sample
of VIPERS.

Figure 10. Combined likelihood surfaces for the model fits
to the four power spectra estimated within the two redshift
ranges 0.6 < z < 0.9 and 0.9 < z < 1.1 in W1 and W4.
Contours correspond to two-parameter confidence levels of
68, 95 and 99 per cent (TBD - CHECK!) The power
spectrum data are included down to scales corresponding
to a kmax = 0.3h Mpc−1 (are we sure we want to stick
to that?). We have marginalised over the bias factor. The
cross corresponds to the best-fit values, while the diamond
gives the latest Planck values (REFERENCE).

We also combine the posterior likelihoods in z1 and z1 to
estimate the degeneracy in the matter density and baryonic
fraction plane (green region in figure 11) obtained from
the full VIPERS sample, after marginalising over the bias
factor. The best fit for the matter density, obtained after
marginalising over the baryonic fraction, is ΩM = 0.32+0.08

−0.10,
while for the baryonic fraction, after marginalising
over the matter density, we measure fB = 0.17+0.09

−0.08 .
These results are consistent with the Planck value
of ΩM = 0.3175 and fB = ΩB/ΩM = 0.049/0.3175∼ 0.15
(Planck Collaboration et al. 2013) within statistical uncer-
tainties.

Figure 11. Likelihood surfaces as in Figure 10, but consid-
ering separately the two redshift ranges, i.e. 0.6 < z1 < 0.9
(red), and 0.9 < z2 < 1.1 (blue). Note the strongest degen-
eracy in the high-z bin. Would it be useful also to show
what happens when considering W1 and W4 separ-
ately?

6.3. Comparison with previous VIPERS results

Given the strong degeneracy between the baryonic frac-
tion and the matter density in the determination of the
overall shape of the matter power spectrum, we decide to
extract only the ΩM parameter fixing the fB quantity to
known prior. For the estimation of ΩM , we run an MCMC
for each redshift bin, z1 and z2, combining the chi-square of
the two fields. We assume a ΛCDM cosmology with the the
accelerated expansion caused by a cosmological constant
term with w = −1 and flat space Ωk = 0. We allow to vary,
in our power spectrum modelling, some cosmological para-
meters fixing Gaussian prior to the best available estima-
tion as the spectral index, ns = 0.9616± 0.0094, and scalar
amplitude, ln(1010As) = 3.103± 0.072, from Planck results
(Planck Collaboration et al. 2013), the Hubble constant
h = 0.738± 0.024 from the measurements of the Hubble
Space Telescope (HST, Riess et al. 2011) and the baryonic
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S. Rota et al.: Cosmological constraints from the VIPERS galaxy power spectrum

The z-direction of the FFT grid in Fourier space (kz)
is required to be parallel to the line-of-sight in order to
assume the plane-parallel approximation.

Linear perturbation theory predicts can use to show
that the growth rate can be approximated by f ≈ Ωγ

M (a)
where the γ index depends on the mechanism respons-
ible for the acceleration of the expansion of the universe
(Steigerwald et al. 2014) (Add CITATIONS). Since in the
present work we aime at constraining cosmological para-
meters in the frame work of the ΛCDM cosmological model
and taking advantage of the high redshift of VIPERS we use
the approximation γ ≈ 0.55. In Eq. (12) the normalized ve-
locity dispersion σ is expressed in distance units (h−1Mpc)
and can be related to the velocity dispersion σV by

σ = σV
1 + z

H(z)
. (13)

Since RSD introduce anisotropies in the galaxy power
spectrum and given the anisotropy of the VIPERS WF (as
we have seen in figure 3), the theoretical model power spec-
trum Pr must include RSD before doing the convolution
with the VIPERS WF

PCONV (k) =

∫

Ps(k
′) |W (k − k′)|2

d3k′

(2π)3
. (14)

In figure 5, we show the comparison between the measured
power spectrum averaged over the 26/34 mock catalogues
in real-space and redshift-space for both fields W1/W4. It
shows the increase of the amplitude of fluctuations at larger
scales (small k’s) and the damping at smaller scales (high
k’s). We over-plot the theoretical model power spectrum
of figure 4 (solid black line) convolved with the VIPERS
WF for the real case and with the inclusion of RSD before
the convolution in redshift space. The agreement between
measurements and the corrected model is good at the
percent level on the considered scales; meaning that we
are correctly treating RSD and window function effect.
Instead, we have tested separate the effect of the window
function and of RSD by directly convolving the monopole
power spectrum with WF (as often done in redshift sur-
veys CITATIONS) and found a poor agreement between
predictions and measurement in redshift space.

Finally, we can include the error on the redshift meas-
urement almost in the same way as the RSD treatment.
This error has been estimated to be σV = 0.00047(1+z) or
σcz = 141(1+ z) kms−1 (CITATION) which is of the order
of the velocity dispersion of galaxies σV /2 ∼ 514/2 kms−1

(Bel et al. 2014). The net effect of redshift errors is to
smooth the clustering at small scales as the pairwise pe-
culiar velocity of galaxies, damping even more the ob-
served power spectrum. We therefore model the effect of
redshift errors by adding in quadrature the VIPERS rms
redshift error to the peculiar velocity dispersion of galax-

ies σTOT = 2
√

(

σV

2

)2
+ σ2

cz(1 + z)−2. We tested on mock
catalogues that using this prescription we are still able to
model the shape of the power spectrum once we include
Gaussian redshift errors.

4.2. Fiducial cosmology

Measuring the galaxy power spectrum requires to set a cos-
mological model in order to convert redshifts (observable

Figure 5. Top panel : measured power spectrum averaged
over all the 26 mock catalogues (for a W1 field geometry ex-
tended between 0.6 < z < 0.9 including the angular mask)
with particles distributed in real space (circle blue points)
and in redshift space (circle red points). The dashed black
lines correspond to the best-fit model simply convolved with
the VIPERS WF in the real case and corrected as in equa-
tion 12 to include RSD and then convolved in the redshift-
space case. Bottom panel : same as the top panel but for
the W4 field.

space) into comoving distances (physical space). Thus one
needs either to take into account the modification of the
galaxy power spectrum due to the choice of a cosmology,
known as the AP effect (Alcock & Paczynski 1979) or to
recompute the observable (here the power spectrum) in
each tested cosmologies (CITATIONS). Since the estima-
tion of the galaxy power spectrum requires a non negligible
computational time we followed the technic introduced by
Eisenstein et al. (2005) who have shown that the AP ef-
fect can be taken accurately into account by rescaling the
model power spectrum computed in a given cosmology to
the fiducial cosmology (chosen to estimate the galaxy power
spectrum). This rescaling is based on the conservation of
the observables ∆z and ∆θ which are the redshift interval
along the line-of-sight and the angle occupied a physical
vector r. This leads to the definition of the rescaling para-
meter

α = (α2
⊥α∥)

1
3 , (15)

which is a combination of a perpendicular defined as

α⊥ =
DA,model

DA,fiducial
, (16)

whereDA is the angular comoving distance and line-of-sight
rescaling defined as

α∥ =
Hfiducial(z̄)

Hmodel(z̄)
, (17)
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Figure 3. Left panel : VIPERS WF evaluated for a W1 geometry extended between 0.6 < z < 0.9. In order to have an
idea of the three dimensional behaviour of the VIPERS WF, we estimate the 3D WF and averaged it along the main axes
of the cone-like shape: declination and right ascension. We compare the WF associated to the overall VIPERS cone-like
geometry (dot-dashed lines, parent shape) in the most problematic directions, declination (black) and right ascension
(blue), with the one accounting for the angular selection of galaxies (solid lines). Right panel : same as the left panel
but for the W4 field.

Figure 4. Top panels : measured power spectra averaged over all the mock catalogues with only the overall VIPERS
geometry (circle filled blue points) and with the inclusion of the angular mask selection (empty red diamond) for the W1
(left) and W4 (right) field. The solid black line shows the best-fit theoretical model while the dashed lines correspond to
the model power spectrum after applying the convolution with the two WFs of Fig. 3. Bottom panels : per cent relative
error between the power spectrum measured from mocks with the angular mask applied (diamond red points) and the
convolved best-fit model (dashed black lines). Insets : amplitude of the BAO signal assuming a MultiDark cosmology
(solid black line, simply obtained dividing the model in the top panel with a theoretical power spectrum without wiggles)
compared to the expected (severely damped) BAO signal from the VIPERS data once we convolved the model power
spectrum with the VIPERS WF (dashed line).

7

★ Window function structure corresponds to 
scale of pointings

★ Anisotropic in the RA, Dec and line-of-sight

★ Julien Bel will tell how this is doneSee Mike Wilson’s poster

… for a different approach 
using moments of the window 
in configuration space. 

Separation
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Distance in redshift-space:

Redshift-space power spectrum (Kaiser formula):

⇠s(~r) =

Z
d3k

(2⇡)3
ei

~k·~sP s(k, µ)

Transform to the correlation function:

de la Torre & Guzzo  2012

8 S. de la Torre & L. Guzzo
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Figure 6. Measured ⇠(r?, rk) and associated models for L > L⇤ galaxies
at z = 1. In each panel the dotted, dot-dashed, and solid curves correspond
respectively to model A, B, and C with exponential damping and linear bias,
while the contours correspond to the measured ⇠(r?, rk) in the galaxy cat-
alogue. The top panel shows the fiducial prediction of the models while the
bottom panel shows the best-fitting model when the parameters (f ,�

v

,b
L

)
are allowed to vary. We note the fiducial value for �

v

is fixed to its linear
value. In this figure, the measured ⇠(r?, rk) is smoothed using a Gaussian
kernel of size 0.5h�1

Mpc.

determined for each galaxy population by minimising the differ-
ence between ⇠

gg

and b2
L

⇠
��

on scales above r = 10h

�1

Mpc.
It is evident from this figure that non-linearities in the galaxy bias
produce variations up to 40% in the real-space clustering on scales
1h

�1

Mpc < r < 20h

�1

Mpc, the strength of the effect increas-
ing for more luminous galaxies.

Let us come back to our original L > L⇤ catalogues and re-
peat the analysis of the previous section now including the scale
dependence of galaxy bias shown in Fig. 8. The new statistical and
systematic errors on f estimated from our simulated catalogues are
shown in Figs. 9 and 10. In general, one sees that including the
bias scale-dependence information has only the effect of shifting
the recovered f values by about �3% at both z = 1 and z = 0.1.
This systematic effect is not straightforward to explain but could be
due to degeneracies in the models when including this extra degree
of freedom. Accounting for bias scale dependence tends however
to reduce the dependence of the systematic error on the minimum
fitted scale when including scales below r? = 10h

�1

Mpc: the
retrieved value is more constant down to rmin

? = 1h

�1

Mpc for
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Figure 7. Same as Fig. 6 but at z = 0.1.
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Fig. 19. A plot of f�8 versus redshift, showing VIPERS result contrasted with a compilation of recent measurements. The previous results from
2dFGRS (Hawkins et al. 2003), 2SLAQ (Ross et al. 2007), VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al.
2012), WiggleZ (Blake et al. 2012), BOSS (Reid et al. 2012), and 6dFGS (Beutler et al. 2012) surveys are shown with the di↵erent symbols (see
inset). The thick solid (dashed) curve corresponds to the prediction for General Relativity in a ⇤CDM model with WMAP9 (Planck) parameters,
while the dotted, dot-dashed, and dot-dot-dashed curves are respectively Dvali-Gabadaze-Porrati (Dvali et al. 2000), coupled dark energy, and
f (R) model expectations. For these models, the analytical growth rate predictions given in di Porto et al. (2012) have been used.
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Fig. 18. Marginalized likelihood distribution of f�8 in the data (solid
curve) and distribution of fitted values of f�8 for the 26 individual Mul-
tiDark simulation mocks (histogram). These curves show a preferred
value and a dispersion in the data that is consistent at the 1� level with
the distribution over the mocks.

as expected given the minimum scales we consider, although in
the case of model B the change in f�8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at

the price of slightly larger systematic error. Therefore from this
test we decided to use model B and a compromise value for the
minimum scale of smin = 6 h�1 Mpc.

7.5. The VIPERS result for the growth rate

These comprehensive tests of our methodology give us con-
fidence that we can now proceed to the analysis of the real
VIPERS data and expect to achieve results for the growth rate
that are robust, and which can be used as a trustworthy test of
the nature of gravity at high redshifts.

As explained earlier, we assume a fixed shape of the mass
power spectrum consistent with the cosmological parameters ob-
tained from WMAP9 (Hinshaw et al. 2012) and perform a max-
imum likelihood analysis on the data, considering variations in
the parameters that are not well determined externally. The best-
fitting models are shown in Fig. 17 when considering either a
Gaussian or a Lorentzian damping function. Although the mock
samples tend to slightly prefer models with Lorentzian damping
as seen in Fig. 16, we find that the Gaussian damping provides
a much better fit to the real data and we decided to quote the
corresponding f�8 as our final measurement.

We measure a value of

f (z = 0.8)�8(z = 0.8) = 0.47 ± 0.08, (32)

which is consistent with the General Relativity prediction in a
flat ⇤CDM Universe with cosmological parameters given by
WMAP9, for which the expected value is f (0.8)�8(0.8) = 0.45.
We find that our result is not significantly altered if we adopt
a Planck cosmology (Planck Collaboration et al. 2013) for the
shape of the mass power spectrum, changing our best-fitting f�8
by only 0.2%. This shows that given the volume probed by the
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moments ⇠0(s) and ⇠2(s), where most of the relevant informa-
tion is contained, and ignore the contributions of the more noisy
subsequent orders. The multipoles moments are measured from
⇠(s, µ) which is obtained exactly as for ⇠(rp, ⇡), except that the
redshift-space separation vector s is now decomposed into the
polar coordinates (s, µ) such that rp = s(1 � µ2)1/2 and ⇡ = sµ.
The multipole moments are related to ⇠(s, µ) as,

⇠`(s) =
2` + 1

2

Z 1

�1
⇠(s, µ)L`(µ)dµ, (23)

where L` is the Legendre polynomial of order `. In practice the
integration of Eq. 23 is approximated by a Riemann sum over the
binned ⇠(s, µ). We use a logarithmic binning in s of � log(s) =
0.1 and linear binning in µ with �µ = 0.02.

7.2. Covariance matrix, error estimation, and fitting

procedure

The di↵erent bins in the observed correlation function and as-
sociated multipole moments are correlated to some degree, and
this must be allowed for in order to fit the measurements with
theoretical models. We estimate the covariance matrix of the
monopole and quadrupole signal using the MultiDark (MD) and
Pinocchio (PN) HOD mocks. The generic elements of the matrix
can be evaluated as

Ci j =
1

NR � 1

NRX

k=1

⇣
yk(si) � ȳ(si)

⌘ ⇣
yk(s j) � ȳ(s j)

⌘
(24)

where NR is the number of mock realizations, y(s) is the quantity
of interest, and the indices i, j run over the data points.

The number of degrees of freedom in the multipole moments
varies between 11 and 15 depending on the scales considered.
Because we have only 26 MD mock realizations, the covariance
matrix elements cannot be constrained accurately with the MD
mocks only: the covariance matrix is unbiased, but it can have
substantial noise. In order to mitigate the noise and obtain an
accurate estimate of the covariance matrix, we apply the shrink-
age method (Pope & Szapudi 2008), using the covariance matrix
obtained with the 200 PN mocks as the target matrix. The PN
mocks are more numerous and therefore each element of the as-
sociated covariance matrix is very well constrained, although the
covariance may be biased to some extent. This bias is related to
inaccuracies in the predicted moments, which are mainly driven
by the limited accuracy of the Zel’dovich approximation used in
the PN mocks to predict the peculiar velocity field. The shrink-
age technique allows the optimal combination of an empirical
estimate of the covariance with a target covariance, minimising
the total mean squared error compared to the true underlying co-
variance. An optimal covariance matrix C is then obtained with

C = �T + (1 � �)S , (25)

where � is the shrinkage intensity and the target T and empirical
S covariance matrices correspond respectively to those obtained
from the PN and MD mocks. � is calculated from (Pope & Sza-
pudi 2008)

� =

P
i, j Cov(S i j, S i j) � Cov(Ti j, S i j)P

i, j(Ti j � S i j)2 , (26)

where Cov(Ai j, Bi j) stands for the covariance between the el-
ements (i, j) of the matrices A and B. We note that, since
the empirical and target matrices are independent, the term

Fig. 14. Anisotropic correlation functions of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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redshift de la Torre et al.  2013

★ Addressing non-linearities in the data
★ Multiple tracers by Faizan Mohammad 

(talk this afternoon)
★ Fourier analysis and clipped power 

spectrum by Mike Wilson (poster)
★ Wiener filtered field (BRG+2015)

★ Analysis of full sample underway

See also
★ Full sample and modelling by 

Andrea Pezzotta (poster)

➡Modelling side: Bianchi, Chiesa, Guzzo 2014
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clipped 5

M. Wilson

Comparison of best-fit growth 
rate as a function of 

maximum wavenumber.

★ See Mike Wilson’s poster

★ Clipping is a non-linear transform of 
the density field that thresholds peaks  
(F. Simpson, M. Wilson)

★ Reduce systematics  
from fingers-of-god

plot by S. Rota
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Density field - mind the gaps
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Bayesian density field estimation 
Wiener filtering, Lognormal poisson prior

Cucciati+2014, Granett+2015

Hunting high and low 
densities

http://vipers.inaf.it

2626 Micol Bolzonella ❂ Aix-en-Provence ❂ July 10th, 2015

Method to fill the gaps between the quadrants and 

reconstruct the expected count-in-cells and density 

field of a complete sample

Cucciati et al. 2014

“Cloning” method and 3D 

Voronoi-Delaunay tessellation

Use photometric sample to Fill in the gaps 
Cloning, ZADE photo-z attractor,  Cucciati+2014



Joint reconstruction
δ, P(k,μ), bg, n(L)/dL

★ Use of Gibbs sampler to jointly estimate density field, power spectrum, 
galaxy biases and luminosity function.  
Granett+2015
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Wiener density field & Gaussian constrained realisation

1505.06337



Joint reconstruction
δ, P(k,μ), bg, n(L)/dL
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B. R. Granett et al.: VIPERS reconstruction of the redshift-space galaxy density field

Parameter Symbol Dimension

Overdensity field �
2 ⇥ 72 ⇥ 16 ⇥ 172
(5h�1Mpc cubic cells)

Power spectrum P 109
Distortion factor � 1
Velocity dispersion �v 1
Galaxy bias b 37 (19 blue, 18 red)
Mean number density N̄ 37
Luminosity evolution E 8

Table 1: Accounting of the free parameters in the data model.

the line-of-sight direction (Hamilton, 1998). We model the sig-
nal on the cartesian Fourier grid as

S (k, µ; �,�v,�obs) = A

⇣
1 + �µ2

⌘2

1 + k2
los�

2
v

e�
k2
los�

2
obs

2 B2(kx, ky, kz)P(k),

(10)

where µ ⌘ klos/k and k =
q

k2
x + k2

y + k2
z . The line-of-sight di-

rection is aligned with the grid such that klos = kz taking the
plane-parallel approximation.

The coherent motions of galaxies on large scales are de-
scribed by the Kaiser (1987) factor with � = f /bg where the
growth rate in ⇤CDM is f (z) = d log D/d log a. On small
scales, velocities randomise and may be modelled by an ex-
ponential pairwise velocity dispersion giving a Lorentzian pro-
file in Fourier space which we refer to as the dispersion model
(Ballinger et al., 1996). The velocity dispersion term, �v in
Eq. 10, has units h�1Mpc. The conversion to velocity units is
H(z)/(1 + z)/

p
2 ⇡ 60.0 hMpc�1 km s�1 which over the red-

shift range of interest is nearly constant. We add a Gaussian term
along the line of sight to characterise redshift measurement er-
rors where �obs = �cz/H(z) and �cz is the redshift error. For
VIPERS the estimated redshift error is �cz = 141(1 + z)km/s
(Guzzo et al., 2014) and �obs = 1.67h�1Mpc and is nearly con-
stant over the redshift range 0.6-1.0.

The factor B(kx, ky, kz) accounts for the cell window function
arising from the anti-aliasing filter and is given by Eq. A.2. In
this analysis the absolute amplitude of the power spectrum is not
constrained. So we set the amplitude A in Eq. 10 to fix �8 = 0.8,
the variance computed on a scale of R = 8 h�1Mpc integrated to
the Nyquist frequency.

We ignore geometric distortions arising from the choice of
the fiducial cosmology (Alcock & Paczynski, 1979). The result-
ing bias is not significant when compared with the statistical
uncertainties of the VIPERS redshift-space clustering measure-
ments (de la Torre et al., 2013). However, when carrying out a
model test, we may rescale the density field and two point statis-
tics to transform from the fiducial to the test cosmology as car-
ried out for the VIPERS power spectrum analysis by Rota et al
(in preparation), but this is not done here.

4. Gibbs sampler

We present a brief overview of the Gibbs sampler. Since our im-
plementation di↵ers from that of Jasche & Wandelt (2013b) we
provide a detailed description in Appendix B. The full parame-
ter set introduced in the previous section is summarised in Table
1. We use the Gibbs sampling method to sample from the joint
posterior of the parameter set. This is performed by iteratively

drawing samples from each conditional probability distribution
in the following steps (where indicates that a sample is drawn
from the given distribution):

1. Generate �s+1  p(�|N̄ s, bs, Ps, �s,�s
v,N)

2. Generate Ps+1  p(P|�s+1, N̄ s, bs, �s,�s
v,N)

3. Normalise power spectrum Ps+1.
4. Generate �s+1,�s+1

v  p(�,�v|Ps+1, �s+1, N̄ s, bs,N)
5. Generate N̄ s+1  p(N̄ |bs+1, Ps+1, �s+1,�s+1

v , �
s+1,N)

6. Generate Es+1  p(E|N̄ s, bs+1, Ps+1, �s+1,�s+1
v , �

s+1,N)
7. Generate bs+1  p(b|Ps+1, �s+1,�s+1

v , �
s+1, N̄ s+1,N)

These steps are repeated forming a Markov chain and after an
initial burn-in period we can expect that the samples are repre-
sentative of the joint posterior distribution.

In the first step, we sample from the conditional probabil-
ity distribution for the density field in a two-stage procedure.
First, the Wiener filter is used to compute the maximum a-priori
field �WF (Kitaura et al., 2010). The Wiener filter solution is a
smoothed field that gives an underestimate of the true power. To
generate a realisation of the density field a random component
that is uncorrelated with the observations �random is added (Jew-
ell et al., 2004). The final field is thus the sum � = �WF + �random.

After constructing a realisation of the density field, the sec-
ond step is to sample the power spectrum. We do put a Gaus-
sian prior on the first bin at k < 0.01hMpc�1setting the mean
and variance to the Fiducial value and sample variance expec-
tation. This aids the stability of the chain. A uniform prior is
used for the bins at k > 0.01hMpc�1. We use two approaches
to sampling the power spectrum detailed in Appendix B.2. First,
we draw samples from the inverse-gamma distribution, see e.g.
Jasche et al. (2010b). However this produces very small steps in
the low signal-to-noise regime and so can be ine�cient at small
scales. Therefore, on alternative steps we carry out a Metropolis-
Hastings routine to draw samples of the power spectrum accord-
ing to the likelihood, Eq. B.2. We find consistent sampling of the
power spectrum using the two methods.

Since we cannot constrain the absolute normalisation of the
power spectrum, we normalise to the desired value of �8. We
next draw the redshift-space distortion parameters �,�v which
are independent of the power spectrum amplitude.

Next, we sample from the mean density conditional prob-
ability distribution for each galaxy sample which includes the
evolution factor E. Here we use a Poisson distribution, as de-
scribed in Appendix B.4.

Finally we sample from the bias conditional probability dis-
tribution for each galaxy sample. This distribution is Gaussian
for the bias parameter (see Appendix B.3). In this method, the
bias is computed on the redshift-space grid, which in our case
has a resolution of 5h�1Mpc. For physical interpretation it is in-
teresting to estimate the bias averaged on larger scales. So, in
estimating the bias we first down-grade the grid resolution by
a factor of two, such that the bias is averaged over a scale of
10h�1Mpc. We impose a uniform prior for the bias values of
0.5 < b < 4.

5. Application to VIPERS

5.1. Set-up

The data and mock catalogues are processed similarly, although
the construction of galaxy subsamples di↵ers. The mock cata-
logues do not include the inhomogeneous incompleteness cor-
rected for in the data by the SSR and TSR factors. The uncer-
tainties introduced by these corrections are negligible compared
with statistical uncertainties in VIPERS.
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Joint reconstruction
δ, P(k,μ), bg, n(L)/dL

★ Color dependence shows red/blue bimodality

★ Luminosity dependence in agreement with 
previous VIPERS analyses.

➡ Projected correlation function (Marulli+13)
➡ Counts-in-cells PDF (Di Porto+15, Cappi+15)
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Joint reconstruction
δ, P(k,μ), bg, n(L)/dL
★ Comparison of n(z,L) with Fritz et al

★ Bayesian estimator accounts for 
correlations between galaxy bias and 
luminosity 
(a difference with STY estimator)
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� ��,chain ��,mock be f f �b,chain �b,mock f�8 � f ,chain � f ,mock
Mock 0.47 �0.12/+0.09 0.09 1.54 �0.04/+0.04 0.03 0.46 +0.09/�0.12 0.08

VIPERS 0.41 �0.08/+0.07 1.44 �0.03/+0.02 0.38 �0.07/+0.06

Table 2: The constraints on redshift-space distortion parameters. We give the 68% confidence intervals from the chains and the
standard deviation amongst the 26 mock catalogues. The fiducial value is f�8(z = 0.7) = 0.45.

Fig. 9: The galaxy bias measured from the full (red and blue combined) VIPERS galaxy sample in luminosity threshold bins. Ref-
erence data are taken from the VIPERS projected correlation function analysis (Marulli et al., 2013) and counts-in-cells probability
distribution function analysis (Di Porto et al., 2014). Note that the redshift ranges di↵er.

Fig. 10: The galaxy luminosity function inferred from the mean
density Markov chain for red, blue and combined samples in red-
shift bins. Markers are plotted at the median value of the chain
and the height of the rectangles indicates the 68% confidence
interval. The Schechter function fits from Fritz et al. (2014) are
overplotted for comparison.

6. Conclusions

Using VIPERS we have demonstrated a method to reconstruct
the galaxy density field jointly with the redshift-space power
spectrum, galaxy biasing function and galaxy luminosity func-
tion with minimal priors on these parameters. The Bayesian
framework naturally accounts for the correlations between these

Fig. 11: The normalised correlation matrix of the parameters
computed from the VIPERS Markov chain. The blocks repre-
sent the mean density, galaxy bias, power spectrum and RSD
parameters. The structure in the covariance arises from the data
model parameterisation. The values of luminosity and colour de-
pendencies of galaxy bias and mean density within a redshift bin
are strongly correlated, while they are only weakly correlated
across redshift. On large scales the power spectrum covariance
is diagonal, but at k > 0.3hMpc�1the bins become correlated
due to coupling of the small-scale power with the redshift-space
distortion parameters.

observables. We adopt a likelihood function for the galaxy num-
ber counts that is given by a multivariate Gaussian and set a
Gaussian prior on the density field. The solution that maximises
the posterior distribution is given by the classical Wiener filter.
To sample from the posterior distribution we add a Gaussian
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D. Micheletti et al.: The VIMOS Public Extragalactic Redshift Survey

Fig. 11. Illustration of the region surrounding the largest maximal sphere in our catalogue (W1.0075.000), which has radius of 31 Mpc. The
left-hand panel shows this sphere and the other six maximal spheres detected in this void region. The right-hand panel shows, in red, the centres of
the overlapping significant spheres that make up the void, other void regions within this area of the survey are shown in orange. The black points
in both panels are the unisolated galaxies, while the grey points are the isolated galaxies.

Fig. 9. Size distribution for maximal sphere found in W1 and W4 field
samples and in VIPERS-like samples. The shaded regions correspond
to the standard deviation of the measurements in the mock catalogues.

its comoving radius in Mpc; a p-value giving the detection sig-
nificance with respect to a Poisson distribution.

7. Void-galaxy cross-correlation function

The void-galaxy cross-correlation function measures the prob-
ability, in excess of random, of finding a galaxy at a certain
distance from the centre of a void. Cross correlations between
galaxies and other astronomical objects, such as groups, clus-
ters, and quasars, have been studied extensively (Padilla et al.,
2001; Padilla & Lambas, 2003; Myers et al., 2003; Yang et al.,
2005; Mountrichas et al., 2009; Knobel et al., 2012). However,
the study of void-galaxy cross correlations is in its infancy.

Nevertheless, the void-galaxy cross-correlation function has
the potential to be a valuable statistic. It contains information
that can be used to constrain models of galaxy bias (Hamaus
et al., 2014). It might also be possible to use the geometrical
properties of the void-galaxy cross correlation function as a stan-
dard ruler (Sutter et al., 2012a).

The void-galaxy cross correlation function contains informa-
tion on the mean density profile of the voids and on the dynam-
ics of the tracer population (Padilla et al., 2005; Paz et al., 2013).

This information can be used to discriminate between di↵erent
theories of gravity (Martino & Sheth, 2009).

There is an on-going debate in the literature on the univer-
sality of void density profiles (Hamaus et al., 2014; Ricciardelli
et al., 2014; Nadathur & Hotchkiss, 2014; Nadathur et al., 2014).
It is generally agreed that void density profiles can be divided
broadly into two categories: compensated and uncompensated
voids. Compensated voids are surrounded by an over-dense shell
and may indeed be embedded in over-dense regions that are
eventually going to collapse, destroying these voids. Uncompen-
sated voids are not surrounded by an over-dense shell and repre-
sent under-dense regions that will continue to exist in the future
(Sheth & van de Weygaert, 2004). Our decision to include only
the most significantly empty spheres in our catalogue means that
our voids are relatively large. Generally they should correspond
to uncompensated voids and so we should not expect to see a
strong ridge in the correlation function.

The centres of the maximal spheres do not represent the cen-
tres of spherical under densities. However, in principal, there
should be no preferred direction to the asymmetry of the voids in
our catalogue. Therefore, stacking the maximal spheres should
produce an axially symmetric density profile.

Here we search for evidence of anisotropy in the void-galaxy
cross-correlation function. As previously mentioned, galaxies
within voids are expected to flow towards the edge of the void
under the influence of gravity. Since the redshift of a galaxy, a
measure of its recessional velocity, is used as a proxy for dis-
tance, these linear outflows are expected to produce an enhance-
ment of the void-galaxy cross-correlation function in the line of
sight direction relative to the tangential direction. There should
also be an apparent stretching of voids along the line of sight.
However, uncertainty in defining the void centres will smooth
out this e↵ect.

We measured the cross-correlation function using the Davis
& Peebles (1983) estimator,

⇠vg(⌘,↵) =
NR

Ng

DD(⌘,↵)
DR(⌘,↵)

� 1, (8)

where DD(⌘,↵) and DR(⌘,↵) are the number of void-galaxy and
void-random pair counts as a function of void-galaxy separation.
NR and Ng are the number of random points and the number
of galaxies, respectively. The coordinates ⌘ and ↵ are the void-
galaxy radial separation (normalised to the radius of the void),
⌘ = r/Rv, and the angle between the line of sight and the line
connecting the void centre with the galaxy.
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Cosmic voids in VIPERS

★ Void finding algorithm based upon empty spheres  
Micheletti,Iovino+(2014)
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The random catalogue has the same volume and angular se-
lection function as the real data. In order to have the correct ra-
dial selection function, redshift values were randomly assigned
from the redshift values of galaxies in the VIPERS-like mocks.

Other estimators, such as the Landy-Szalay estimator, are
less biased than the estimator we are using, however, they re-
quire random catalogues for both sets of objects being cross-
correlated. Since we cannot estimate the selection function of
the voids in advance, constructing a corresponding random cata-
logue is not possible. Therefore, we will use the Davis and Pee-
bles estimator.

We first measured the cross-correlation function in the mock
catalogues. To maximise the total number of void-galaxy pairs
we reintroduced the isolated galaxies (see section 5.1) and used
all the maximal spheres, including spheres close to the survey
borders. This ensures that we are including all available infor-
mation about the density profile of the voids.

The mean void-galaxy cross-correlation from the mock cat-
alogues is plotted in the right-hand panel of figure 12. One can
see that close to the origin the cross-correlation function is close
to ⇠ ⇠ �1, rising to zero far away from the void centre. There
is also a clear anisotropy visible. The correlation function is en-
hanced in the line of sight direction, peaking strongly between
one and two times the radius of the maximal spheres. This is the
result of linear redshift space distortions.

We then proceeded to measure the void-galaxy cross-
correlation function in the VIPERS data, illustrated in the left-
hand panel of Fig. 12. Similarly to the mocks, there is a clear
enhancement of the correlation function in the line of sight di-
rection.

Using the variance of the measurements of the mock cata-
logues we are able to calculate the �2 between our measurement
of ⇠vg(⌘,↵) in the VIPERS data and in the mocks. The value
quantifies the agreement between the data and mock catalogues.
The computation of the �2 requires knowing the inverse of the
covariance matrix of data points. In our case, we cannot estimate
it with su�cient accuracy with the mock catalogues and so we
use only the variance neglecting the covariance terms. We find
that the reduced �2 = 0.49 (per degree of freedom, for the 60
⌘-↵ bins in Figure 12), which is a very good fit. This value may
be lower than expected since we have neglected the correlations
between data points. This supports the validity of the concor-
dance cosmology and the halo model used to generate the mock
catalogues.

To highlight the enhancement along the line of sight we have
plotted in Figure 13 the VIPERS void-galaxy cross-correlation
function as a function of radial separation for two angular bins,
one close to the line of sight, ↵ < 30�, and one close to the
plane of the sky, ↵ > 60�. One can see that, particularly in the
range 1-2.5 void radii, the line of sight cross-correlation function
is greater than the parallel. Furthermore, for both the ↵ < 30�
and ↵ > 60� cases, the cross-correlation lies within the range
of values measured in the mocks. This further demonstrates the
good agreement between the data and the mock catalogues.

8. Discussion and conclusions

VIPERS (VIMOS Public Extragalactic Redshift Survey; Guzzo
et al., 2014) is mapping the large-scale distribution of galaxies
at redshift 0.5 < z < 1.2 and provides a unique volume in which
to study the distribution of voids in the galaxy distribution at
moderate redshift.

The identification of voids in the galaxy distribution is chal-
lenging and it is made more di�cult by observational sys-

Fig. 13. The angle-average void-galaxy correlation function as a func-
tion of radial distance normalised to the void radius. To demonstrate the
anisotropy we average over two angular wedges, along the line of sight
(↵ < 30�, black line) and transverse to the line of sight (↵ > 60�, red
line). The shaded regions represent the spread of values measured in
the mocks. The enhancement along the line-of-sight is an indication of
the redshift-space distortion produced by the outflow of galaxies from
voids.

tematics. These e↵ects are particularly important for VIPERS,
which has a complex geometry including internal gaps. The two
VIPERS fields, W1 and W4, have transverse comoving dimen-
sions of ⇠ 70⇥350 Mpc (see Table 1) and the narrow dimension
further limits the volume in which we may identify large under-
densities. The sampling rate is 35% to an apparent flux limit of
iAB = 22.5 (Guzzo et al., 2014). In addition, the survey strategy
leaves gaps in the sky coverage (See Fig. 1). Using counts-in-cell
measurements on mock catalogues we investigated how observa-
tional systematics and redshift-space distortions modify the true
density field. We find that on scales of r & 15Mpc the tails of the
counts-in-cells PDF are well preserved such that we can truly
identify the emptiest regions of the survey.

Void search methods, such as those using Voronoi tessella-
tion (Platen et al., 2007; Neyrinck, 2008; Sutter et al., 2012b), are
unsuitable for this particular survey because of careful correc-
tions required for borders and gaps. Other considerations, such
as the lack of breadth in declination coverage and the limitations
of the VIPERS survey strategy, make it di�cult to apply void
detection methods such as the water-shed method that require
contiguous volumes.

In this paper, we have presented a general void-search al-
gorithm capable of finding empty regions in a galaxy redshift
survey such as VIPERS with irregular borders and internal gaps.
The method is based on the identification of spheres that fit be-
tween galaxies. We show that the voids may be well charac-
terised by keeping only the significant spheres, those that are
unlikely to be found in a uniform Poisson distribution with the
same number density. The significance limit for VIPERS gives
voids with radii greater than ⇠15Mpc. These spheres trace empty
regions of arbitrary shape, as shown in Fig. 11.

The set of largest spheres that do not overlap are termed max-
imal spheres and we find 411 maximal spheres in the VIPERS
survey with radii r & 15Mpc between 0.55 < z < 0.90. The
properties of this special subset may be used to characterise the
void distribution.
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New test of growth of structure

★ Anisotropic void profiles 
normalised to void radius

★ Constraints on growth rate 
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Fig. 19. A plot of f�8 versus redshift, showing VIPERS result contrasted with a compilation of recent measurements. The previous results from
2dFGRS (Hawkins et al. 2003), 2SLAQ (Ross et al. 2007), VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al.
2012), WiggleZ (Blake et al. 2012), BOSS (Reid et al. 2012), and 6dFGS (Beutler et al. 2012) surveys are shown with the di↵erent symbols (see
inset). The thick solid (dashed) curve corresponds to the prediction for General Relativity in a ⇤CDM model with WMAP9 (Planck) parameters,
while the dotted, dot-dashed, and dot-dot-dashed curves are respectively Dvali-Gabadaze-Porrati (Dvali et al. 2000), coupled dark energy, and
f (R) model expectations. For these models, the analytical growth rate predictions given in di Porto et al. (2012) have been used.
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Fig. 18. Marginalized likelihood distribution of f�8 in the data (solid
curve) and distribution of fitted values of f�8 for the 26 individual Mul-
tiDark simulation mocks (histogram). These curves show a preferred
value and a dispersion in the data that is consistent at the 1� level with
the distribution over the mocks.

as expected given the minimum scales we consider, although in
the case of model B the change in f�8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at

the price of slightly larger systematic error. Therefore from this
test we decided to use model B and a compromise value for the
minimum scale of smin = 6 h�1 Mpc.

7.5. The VIPERS result for the growth rate

These comprehensive tests of our methodology give us con-
fidence that we can now proceed to the analysis of the real
VIPERS data and expect to achieve results for the growth rate
that are robust, and which can be used as a trustworthy test of
the nature of gravity at high redshifts.

As explained earlier, we assume a fixed shape of the mass
power spectrum consistent with the cosmological parameters ob-
tained from WMAP9 (Hinshaw et al. 2012) and perform a max-
imum likelihood analysis on the data, considering variations in
the parameters that are not well determined externally. The best-
fitting models are shown in Fig. 17 when considering either a
Gaussian or a Lorentzian damping function. Although the mock
samples tend to slightly prefer models with Lorentzian damping
as seen in Fig. 16, we find that the Gaussian damping provides
a much better fit to the real data and we decided to quote the
corresponding f�8 as our final measurement.

We measure a value of

f (z = 0.8)�8(z = 0.8) = 0.47 ± 0.08, (32)

which is consistent with the General Relativity prediction in a
flat ⇤CDM Universe with cosmological parameters given by
WMAP9, for which the expected value is f (0.8)�8(0.8) = 0.45.
We find that our result is not significantly altered if we adopt
a Planck cosmology (Planck Collaboration et al. 2013) for the
shape of the mass power spectrum, changing our best-fitting f�8
by only 0.2%. This shows that given the volume probed by the
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Summary
★ VIPERS exploits VIMOS capabilities for LSS study, unique at z~1: volume 6 x 107 h-3 Mpc3,  

sampling ~ 40%

★ Volume smaller than BAO surveys (BOSS, Wigglez), but high sampling will allow defining sub-
populations and optimize tracers for clustering studies

★ In parallel, powerful probe for galaxy evolution studies over 8 billion years

★ Efficient survey pipeline: automatic data calibration, redshift measurement and database archiving:  
as of today ~89,000 secure spectra already available

★ Large set of ancillary data already available (GALEX, WIRCAM, VISTA, XMM)

★ Early science release happened March 2013

★ Survey is now complete and final analyses in preparation

★Fourier analysis and cosmological parameters

★Redshift-space clustering and growth rate

★Cosmic voids

★Galaxy environment, bias

★ Final public data release to be in 2016
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