Perturbation Theory and large deviation functions in cosmology

Self gravitating fluids

- A multi-component formulation
- Dynamical equations (in Fourier space)

$$
\Psi_{a}(\mathbf{k}, \eta)=\left(\begin{array}{c}
\delta(\mathbf{k}, \eta) \\
\theta(\mathbf{k}, \eta) \\
\cdots
\end{array}\right)
$$

$$
\frac{\partial}{\partial \eta} \Psi_{a}(\mathbf{k}, \eta)+\Omega_{a}^{b}(\eta) \Psi_{b}(\mathbf{k}, \eta)=\gamma_{a}^{b c}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \Psi_{b}\left(\mathbf{k}_{1}, \eta\right) \Psi_{c}\left(\mathbf{k}_{2}, \eta\right)
$$

convolution is implicit

- Explicit results will be given here for a single-component pressureless fluid
- detailed effects of baryons versus DM can be taken into account (Somogyi \& Smith 20I0; FB, Van de Rijt, Vernizzi '12) with a 4-component multiplet
- Same structure also for non-interacting relativistic particles (neutrinos) with multiple flow description (Dupuy and FB, 'I4,'I5)
- Diagrammatic representation

$$
\delta_{n}(\mathbf{k})=\int \mathrm{d}^{3} \mathbf{q}_{1} \ldots \int \mathrm{~d}^{3} \mathbf{q}_{n} \delta_{D}\left(\mathbf{k}-\mathbf{q}_{1 \ldots n}\right) F_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right) \delta_{1}\left(\mathbf{q}_{1}\right) \ldots \delta_{1}\left(\mathbf{q}_{n}\right)
$$

$\odot=\frac{k}{g(n) \phi(k)} \longleftrightarrow$

- Ensemble averages by glueing diagrams together

Charting PT

number of loops in standard PT for Gaussian
Initial Conditions

	Tree order LO	I-loop NLO	2-loops NNLO	3-loops	...p-loops
2-point statistics	OK	OK	OK	partial exact results	partial resum
3-point statistics	OK	OK (but not systematics)			partial resummations
4-point statistics	OK	OK (but not systematics)			
N-point statistics	OK, in specific geometris (counts in cells)				

- Not a single way of doing PT calculations
- change of variables or fields : most dramatic is Eulerian to Lagrangian
- re-organisation(s) of the perturbation series (for instance with multipoint propagators introduced in FB, Crocce, Scoccimarro, PRD, 2008)
- PT can then come in many different flavors : SPT, RPT, TRG, RegPT, gRPT, MPT
\rightarrow Power spectra up to I-loop and 2-loop order

An alternative to the power spectra: response functions

Of direct interest from $\mathrm{P}(\mathrm{k})$ predictions:

$$
P_{\mathcal{M}_{2}}^{\mathrm{nl}}(k) \approx P_{\mathcal{M}_{1}}^{\mathrm{nl}}(k)+\int \frac{\mathrm{dq}}{q} \mathcal{R}_{\mathcal{M}_{1}}(k, q)\left[P_{\mathcal{M}_{2}}^{\mathrm{lin}}(q)-P_{\mathcal{M}_{1}}^{\mathrm{lin}}(q)\right]
$$

How good can PTs be at predicting response functions?

first measurement of the response function

Nishimichi, FB, Taruya, '/ 4

Comparison with I- and 2-loop results

$$
T^{\text {eff. }}(k, q)=\left[T^{1-\operatorname{loop}}(k, q)+T^{2-\operatorname{loop}}(k, q)\right] \frac{1}{1+\left(q / q_{0}\right)^{2}}
$$

- From PT perspective, UV regularization is necessary
- existence of damping is good news (it reduces sensitivity to small scale physics)
- origin is unclear (associated to shell-crossings ?)

Charting PT

number of loops in standard PT for Gaussian						
Initial Conditions						

Basics of theory of large deviation functions

Review paper by Hugo Touchette, '09
Beyond the central limit theorem
One exemple : tossing, coins and counting the number of heads $\quad x=\frac{1}{n} \sum_{n} t_{n}$

Central limit theorem : $\quad I(x)=2(x-0.5)^{2}$
Exact result : $\quad I(x)=x \log [x]+(1-x) \log [1-x]+\log [2]$

The cumulant generating function: $\varphi(\lambda)=\log \left(e^{\lambda} / 2+1 / 2\right)$ Cramér's Theorem : both are Legendre transform of one-another

Key theorems: relation between rate function and cumulant generating function

Consider a random variable x such that, $\quad x=\frac{1}{n} \sum_{n} v_{i} \quad\left(n \equiv \frac{1}{\sigma^{2}}\right)$
The (scaled) cumulant generating function of x is defined as,

$$
\varphi(\lambda)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left[\left\langle e^{n \lambda x}\right\rangle\right]=\log \left[\left\langle e^{\lambda v}\right\rangle\right] \text { (in case vi are IID) }
$$

The Gärtner-Ellis Theorem (Cramér's Theorem for IID): the rate function is the Legendre-Fenchel transform of the (scaled) cumulant generating function

$$
I(\rho)=\sup _{\lambda}[\lambda \rho-\varphi(\lambda)]
$$

Under some regularity conditions, this relation can be inverted in

$$
\varphi(\lambda)=\sup _{\rho}[\lambda \rho-I(\rho)]
$$

The Contraction Principle

$$
\text { For a mapping } x \rightarrow y \text { we have }, \quad I(y)=\inf _{x, x \rightarrow y} I(x)
$$

that is the rate function for y is the smallest rate function (the most probable) of the values (configurations) that lead to y.

Applications

- Shannon entropy (as rate function) and free energy (as cumulant generating function) in statistical mechanics ;
- Natural generalization for non-equilibrium systems (rate function for configurations) ;
- escape time in dynamical systems in presence of noise ;
- Queuing systems;
- etc..

Consequences in the context of LSS cosmology are at least 2 folds

- you do not need to impose $\delta(x)$ to be small everywhere, only the variance has to be small;
- you have a possible working procedure provided you can identify the leading initial configuration and its probability (rate function).

In practice, such an identification can be done only for configurations with enough symmetries

Density PDFs in concentric cells

description of full joint PDF de densities in concentric cells $\quad P\left(\rho\left(R_{1}\right), \rho\left(R_{2}\right)\right) \mathrm{d} \rho\left(R_{1}\right) \mathrm{d} \rho\left(R_{2}\right)$

For spherical symmetry there exists a function ζ that gives the density ρ as a function of the linear density contrast T

The rate functions (from the contraction principle)

$$
\begin{array}{r}
\Psi\left(\left\{\rho_{i}\right\}\right)=\frac{1}{2} \sum_{i j} \Xi_{i j} \tau_{i} \tau_{j} \\
\text { with } \\
\sigma^{2}\left(R_{i} \rho_{i}^{1 / 3}, R_{j} \rho_{j}^{1 / 3}\right) \Xi_{j k}=\delta_{i k}
\end{array}
$$

The matrix \equiv is given by the inverse of correlation matrix of the density between cells at Lagrangian radius.
initially implemented in FB' 94, FB \& Valageas '00 and developed in Valageas '02

The final expression of the scaled cumulant generating function is then given by

$$
\varphi\left(\left\{\lambda_{i}\right\}\right)=\sum_{i} \lambda_{i} \rho_{i}-\Psi\left(\left\{\rho_{i}\right\}\right) \quad \begin{aligned}
& \text { with stationary } \\
& \text { conditions }
\end{aligned} \quad \lambda_{i}=\frac{\partial \Psi\left(\left\{\rho_{i}\right\}\right)}{\partial \rho_{i}}
$$

Connexion with diagrams in standard PT

scaled cumulant GF: $\quad \varphi(\lambda)=\lim _{\left\langle\rho^{2}\right\rangle_{c} \rightarrow 0}\left\langle\rho^{2}\right\rangle_{c} \sum_{p=1}^{\infty} \frac{\left\langle\rho^{p}\right\rangle_{c}}{p!}\left(\frac{\lambda}{\left\langle\rho^{2}\right\rangle_{c}}\right)^{p}=\lambda+\frac{\lambda^{2}}{2}+S_{3} \frac{\lambda^{3}}{3!}+\ldots$
Average of (combination of) tree order expression of the p-point correlation functions in spherical cells.

$$
\text { Expression of } S_{p}=\lim _{\left\langle\delta^{2}\right\rangle_{c} \rightarrow 0} \frac{\left\langle\delta^{p}\right\rangle_{c}}{\left\langle\delta^{2}\right\rangle_{c}^{p-1}}=\text { tree order expr. }
$$

$$
\begin{aligned}
\left\langle\delta^{3}\right\rangle= & 6 \int \frac{\mathrm{~d} \mathbf{k}_{1}}{(2 \pi)^{3}} P\left(k_{1}\right) P\left(k_{2}\right) \\
& \times F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) W\left(k_{1} R\right) W\left(k_{2} R\right) W\left(\left|\mathbf{k}_{1}+\mathbf{k}_{2}\right| R\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{3}=\frac{34}{7}+\gamma_{1} \\
& S_{4}=\frac{60712}{1323}+\frac{62 \gamma_{1}}{3}+\frac{7 \gamma_{1}^{2}}{3}+\frac{2 \gamma_{2}}{3}
\end{aligned}
$$

$$
S_{5}=\frac{200575880}{305613}+\frac{1847200 \gamma_{1}}{3969}+\frac{6940 \gamma_{1}^{2}}{63}+\frac{235 \gamma_{1}^{3}}{27}
$$

$$
+\frac{1490 \gamma_{2}}{63}+\frac{50 \gamma_{1} \gamma_{2}}{9}+\frac{10 \gamma_{3}}{27}
$$

$$
\gamma_{p}=\frac{\mathrm{d}^{p} \log \sigma^{2}\left(R_{0}\right)}{\mathrm{d} \log ^{p} R_{0}} .
$$

1-cell density
cumulants (FB '94)
it has a non trivial dependence on the wave vectors through the functions F3 and F2

Identification of initial configuration for general profiles

Considering the statistical properties of

$$
\begin{aligned}
& \rho_{w}=\sum_{i} w_{i} \rho\left(<R_{i}\right) \\
& \varphi(\lambda)=\sup _{\left\{\tau_{i}\right\}}\left[\lambda \sum_{i} w_{i} \zeta\left(\tau_{i}\right)-\Psi\left(\left\{\tau_{i}\right\}\right)\right]
\end{aligned}
$$

its scaled cumulant generating function is
(looking for most likely configuration with Lag. mult)

Consequences

$$
S_{3}=3 \nu_{2} \frac{\int d x w(x) \Pi^{2}(x)}{\left[\int d x w(x) \Pi(x)\right]^{2}}+\frac{\int d x w(x) x \frac{d}{d x} \Pi^{2}(x)}{\left[\int d x w(x) \Pi(x)\right]^{2}} \quad \begin{array}{ll}
\text { with } \\
\Pi(x)=\int d y \Xi(x, y) w(y)
\end{array}
$$

Gaussian filter, points by Juszkiewicz, Bouchet, Colombi '93 obtained from direct calculation for specific power law spectra.

Top-hat filter, FB '94

The 2 cell cumulant generating function

The global shape of the joint cumulant generating function

critical lines $=$ stationary constraint is singular $/$ signal to noise $>10 \%$

From cumulant to PDFs

Figure 3. Density profiles in underdense (solid light blue), overdense (dashed purple) and all regions (dashed blue) for cells of radii $R_{1}=10 \mathrm{Mpc} / \mathrm{h}$ and $R_{2}=11 \mathrm{Mpc} / \mathrm{h}$ at redshift $z=0.97$. Predictions are successfully compared to measurements in simulations (points with error bars).

Towards a complete theory of count-in-cell statistics...

Figure 1. the configuration of multiple concentric count in cell statistics.

$$
\begin{aligned}
& \mathcal{P}\left(\left\{\hat{\rho}_{k}\right\},\left\{\hat{\rho}_{k}^{\prime}\right\} ; r_{e}\right)= \\
& \quad \mathcal{P}\left(\left\{\hat{\rho}_{k}\right\}\right) \mathcal{P}\left(\left\{\hat{\rho}_{k}^{\prime}\right\}\right)\left[1+\xi\left(r_{e}\right) b\left(\left\{\hat{\rho}_{k}\right\}\right) b\left(\left\{\hat{\rho}_{k}^{\prime}\right\}\right)\right]
\end{aligned}
$$

A regime of large-deviation functions can be identified in LSS cosmology.

- Observables can be related to joint PDFs of the density in concentric cells but also to the cumulant generating function.
- Natural application of these approaches is the density and profile PDFs

Perspectives:

- These calculations can be applied to 3D and projected mass maps, and to join density of multiple tracers;
- biasing of over-dense/under-dense regions can also be computed = statistical properties of clipped regions;

Charting PT

number of loops in standard PT for Gaussian Initial
Order of observable in field expansion Conditions

	Tree order LO	I-loop NLO	2-loops NNLO	3-loops	\ldots..p-loops		
2-point statistics	OK	OK	OK	partial exact results	partial resum		where most of
:---:							
the action is							

Kernels in Perturbation Theory calculations

Expression of the density kernel for the propagator at I-loop order

$$
f(k, q)=\frac{3\left(2 k^{2}+7 q^{2}\right)\left(k^{2}-q^{2}\right)^{3} \log \left[\frac{(k-q)^{2}}{(k+q)^{2}}\right]+4\left(6 k^{7} q-79 k^{5} q^{3}+50 k^{3} q^{5}-21 k q^{7}\right)}{2016 k^{3} q^{5}}
$$

The spherical collapse: the solution for specific initial conditions

The radius evolution

The exact non-linear mapping for spherically symmetric initial field (for growing mode setting)

$$
\frac{\mathrm{d}^{2} R}{\mathrm{~d} t^{2}}=-\frac{G M(<R)}{R^{2}}
$$

For spherical symmetry perturbations there exists a function ζ that gives the density at time η knowing the density ρ_{0} within the same Lagrangian radius at time n_{0}.

$$
\zeta_{\rho}\left(\eta ; \rho_{0}, \eta_{0}\right)
$$

The result

The rate functions, Legendre Transform of the cumulant generating function,

$$
\varphi\left(\left\{\lambda_{k}, R_{k}\right\}, \eta\right)=\sum_{p_{i}=0}^{\infty}\left\langle\Pi_{i} \hat{\rho}_{R_{i}}^{p_{i}}\right\rangle c \frac{\Pi_{i} \lambda_{i}^{p_{i}}}{\Pi_{i} p_{i}!} \quad \psi\left(\left\{\rho_{k}, R_{k}\right\}, \eta\right)=\sum_{i} \lambda_{i} \rho_{i}-\varphi\left(\left\{\lambda_{k}, R_{k}\right\}, \eta\right)
$$

have, according to the contraction principle, the following time dependence,

$$
\Psi\left(\left\{\rho_{k}, R_{k}\right\}, \eta\right)=\Psi\left(\left\{\zeta\left(\rho_{k}, \eta, \eta^{\prime}\right), R_{k} \frac{\zeta^{1 / 3}\left(\rho_{k}, \eta, \eta^{\prime}\right)}{\rho_{k}^{1 / 3}}\right\}, \eta^{\prime}\right)
$$

In other words we know how to compute the cumulant generating function of densities in concentric cells starting with specific initial conditions.

The mathematical part, construction of the cumulant generating function

from ideas in FB' 94 see also FB \& Valageas '00 and fully developed in Valageas '02
Can we get the whole generating function of the cumulants?

It is given by the following relation (multidimensional Laplace transform of joint-PDFs)

$$
\begin{array}{r}
\varphi\left(\left\{\lambda_{k}\right\}\right)=\sum_{p_{i}=0}^{\infty}\left\langle\Pi_{i} \rho_{i}^{p_{i}}\right\rangle_{c} \frac{\Pi_{i} \lambda_{i}^{p_{i}}}{\Pi_{i} p_{i}!} \\
\exp \left[\varphi\left(\left\{\lambda_{i}\right\}\right)\right]=\left\langle\exp \left(\sum_{i} \lambda_{i} \rho_{i}\right)\right\rangle \\
=\int_{0}^{\infty} \Pi_{i} \mathrm{~d} \rho_{i} P\left(\left\{\rho_{i}\right\}\right) \exp \left(\sum_{i} \lambda_{i} \rho_{i}\right)
\end{array}
$$

Formal solution

$$
\begin{gathered}
=\int_{0}^{\infty} \Pi_{i} \mathrm{~d} \rho_{i} P\left(\left\{\rho_{i}\right\}\right) \exp \left(\sum_{i} \lambda_{i} \rho_{i}\right) \\
\exp \left[\varphi\left(\left\{\lambda_{i}\right\}\right)\right]=\int \mathcal{D}[\tau(\vec{x})] \mathcal{P}[\tau(\vec{x})] \exp \left(\lambda_{i} \rho_{i}[\tau(\vec{x})]\right)
\end{gathered}
$$

Principle of the calculations : in the small variance approximation one can look for the most probable configuration - for fixed ρ_{i} - and compute the resulting cumulant generating function using the

The (conjectured) solution for spherical cells: an initial steepest-descent method. spherical perturbation the profile of which can be computed from spherical collapse solution.

$$
\rho_{i}=\zeta_{\mathrm{SC}}\left(\tau_{i}\right)
$$

The 1-cell rate function and cumulant generating function

The 1-cell rate function compared to Gaussian approximation.
critical point

Example of contribution to the 3 - to n-point

 cumulants at tree order

$$
\begin{aligned}
\left\langle\delta^{3}\right\rangle= & 6 \int \frac{\mathrm{~d} \mathbf{k}_{1}}{(2 \pi)^{3}} P\left(k_{1}\right) P\left(k_{2}\right) \\
& \times F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) W\left(k_{1} R\right) W\left(k_{2} R\right) W\left(\left|\mathbf{k}_{1}+\mathbf{k}_{2}\right| R\right) \\
\propto & \left\langle\delta^{2}\right\rangle^{2}
\end{aligned}
$$

it has a non trivial dependence on the wave vectors through the functions F3 and F2

$$
\left\langle\delta^{p}\right\rangle_{c} \propto\left\langle\delta^{2}\right\rangle_{c}^{p-1}
$$

Predictions for cumulants and PDFs...

Baugh \& Gaztañaga '95
Prediction at tree order is very accurate

Let us assume that,

$$
\varphi(\lambda ; \sigma)=\frac{1}{\sigma^{2}} \varphi_{c}\left(\sigma^{2} \lambda\right)
$$

Application 1: 1-cell PDF and stats

The inverse Laplace transform,

$$
\mathcal{P}\left(\hat{\rho}_{1}\right)=\int_{-\mathrm{i} \infty}^{+\mathrm{i} \infty} \frac{\mathrm{~d} \lambda_{1}}{2 \pi \mathrm{i}} \exp \left(-\lambda_{1} \hat{\rho}_{1}+\varphi\left(\lambda_{1}\right)\right)
$$

requires integration into complex plane.
$P(\rho)=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{\partial^{2} \Psi(\rho)}{\partial \rho^{2}}} \exp [-\Psi(\rho)]$
low density approximation
$P(\rho)=\frac{3 a \frac{3}{2}}{4 \sqrt{\pi}} \exp \left(\varphi^{(c)}-\lambda^{(c)} \rho\right) \frac{1}{\left(\rho+r_{1}+r_{2} / \rho+\ldots\right)^{5 / 2}}$,
large density approximation

Comparison with simulations: the 1-point PDF shape (500 h^(-I) Mpc) ${ }^{\wedge} 3$

FB, Pichon, Codis 'I3

Residuals as a function of R

Effect of scale dependent index

