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Self gravitating fluids
» A multi-component formulation U, (k,n) = | 0(k,n)

» Dynamical equations (in Fourier space)

convolution is

0
—Ua(k,n) + Q. (M, m) = 7, (ks k) Wy(ka,n) Pe(ks,n) implicit

on

» Explicit results will be given here for a single-component pressureless fluid
» detailed effects of baryons versus DM can be taken into account (Somogyi & Smith 2010;

FB,Van de Rijt,Vernizzi 'l 2) with a 4-component multiplet
» Same structure also for non-interacting relativistic particles (neutrinos) with multiple flow

description (Dupuy and FB,’14,°15)
» Diagrammatic representation y d3q1 d 6ok — et ) )
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» Ensemble averages by glueing diagrams together

Pop (kMg)
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Charting PT

Order of observable in field expansion

number of loops in standard PT for Gaussian

Initial Conditions
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p Not a single way of doing PT calculations

P(k)/P no—wiggle (k)

4
4

change of variables or fields : most dramatic is Eulerian to Lagrangian

re-organisation(s) of the perturbation series (for instance with multipoint propagators
introduced in FB, Crocce, Scoccimarro, PRD, 2008)

p PT can then come in many different flavors : SPT, RPT, TRG, RegPT, gRPT, MPT
p Power spectra up to I-loop and 2-loop order
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An alternative to the power spectra :
response functions
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Of direct interest from P(k) predictions:
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How good can PTs be at predicting response functions ?



first measurement of the response function
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Comparison with |- and 2-loop results
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» From PT perspective, UV regularization is necessary

» existence of damping is good news (it reduces sensitivity to small scale
physics)
» origin is unclear (associated to shell-crossings ?)



Charting PT
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large-deviation regime




Basics of theory of large deviation functions

Review paper by Hugo Touchette, ‘09

Beyond the central limit theorem

One exemple : tossing coins and counting the number of heads == %Ztn
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Central limit theorem :  I(z) = 2(z — 0.5)? B
Exactresult:  I(x) = xlog[z] + (1 — x)log[l — z] + log[2] .§
3
The cumulant generating function : ¢(A) = log (e*/2 4 1/2) 5

Cramér’s Theorem : both are Legendre transform of one-another
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Key theorems: relation between rate function and
cumulant generating function

1 1
Consider a random variable x such that, T = — E V; (’n = —2)
n o
The (scaled) cumulant generating function of x is defined as,
—_ - 1 nAx . AU . .
p(A) = nll_{l;l() - log [(e"*)] =log [(e™")] (in case vi are IID)

The Gdrtner-Ellis Theorem (Cramér’s Theorem for IID): the rate function is the
Legendre-Fenchel transform of the (scaled) cumulant generating function

I(p) = St;p[kp — o(A)]

Under some regularity conditions, this relation can be

inverted in ©(A) = sup[Ap — I(p)]
P

The Contraction Principle
For a mapping x — y we have, I(y)= inf I(x)

r, T—Y

that is the rate function for y is the smallest rate function (the most
probable) of the values (configurations) that lead to y.



Applications

- Shannon entropy (as rate function) and free energy (as cumulant
generating function) in statistical mechanics ;

- Natural generalization for non-equilibrium systems (rate function
for configurations) ;

- escape time in dynamical systems in presence of noise ;

- Queuing systems ;

- efc..

Consequences in the context of LSS cosmology are at least 2 folds

- you do not need to impose i(x)to be small everywhere, only the
variance has to be small;

- you have a possible working procedure provided you can identify the
leading initial configuration and its probability (rate function).

In practice, such an identification can be done only for configurations
with enough symmetries



Density PDFs in . ..
concentriccells %

description of full joint PDF de densities in

concentric cells  P(p(R1), p(Rs)) dp(Ry) dp(Rs) Lo s 7
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The rate functions (from the contraction

principle)
{IO'L Z —ig TiTj

with

1/3

J ) =ik —5zk

o*(Rip;"®, R;p);

The matrix = is given by the inverse
of correlation matrix of the density

For spherical symmetry there exists a between cells at Lagrangian radius.

function T that gives the density p as a P din FB' 94. FB & Val
: . . Iinitially implemented in ) alageas
function of the linear density contrast T 00 and developed in Valageas '02

The final expression of the scaled cumulant
generating function is then given by

S oV ({pi})
©({\i}) Z Nipi — Y ({pi}) :;:,:isttiztncsmary Ai = 0p;




Connexion with diagrams in standard PT

scaled cumulant GF:  ¢(\) = lim (p*) i (e (AN _ A+ A 4+ S X 4
' (2he0 " T pl \ (p?). R TR

Average of (combination of) tree order expression of
the p-point correlation functions in spherical cells.
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1-cell density
cumulants (FB '94)

it has a non trivial dependence on the wave
vectors through the functions F3 and F2




|dentification of initial configuration for general profiles

Considering the statistical properties of

its scaled cumulant generating functionis  (p(\) = sup

:Zwi (< R;)
Aszc 7;) ({n})}

{7}

(looking for most likely conflguratlon with Lag. mult)

Consequences

Sg — 3V2

reduced skewness, S3(ny)

[ dz w(z) II*(x) fdx w(z) z-L11%(x)
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II(x) = /dy E(z,y) w(y)

Gaussian filter, points by

Juszkiewicz, Bouchet, Colombi 93
. obtained from direct calculation for
i specific power law spectra.

Top-hat filter, FB ‘94



The 2 cell cumulant generating function

The global shape of the joint cumulant generating function
FB Pichon, Codis 'l 3

theory numerical results for 0 = 0.51
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From cumulant to PDFs

slope

S =
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Figure 3. Density profiles in underdense (solid light blue), over-
dense (dashed purple) and all regions (dashed blue) for cells of
radii Ry = 10 Mpc/h and Rz = 11 Mpc/h at redshift z = 0.97.
Predictions are successfully compared to measurements in simu-
lations (points with error bars).



Towards a complete theory of count-in-cell statistics...

Figure 1. the configuration of multiple concentric count in cell
statistics.

P({pr}, Ak tire) =
P{oe PR} [1 4 &(re)b({pr})b({pk })]



A regime of large-deviation functions can be identified in LSS
cosmology.

- Observables can be related to joint PDFs of the density in concentric
cells but also to the cumulant generating function.

- Natural application of these approaches is the density and profile
PDFs

Perspectives:

- These calculations can be applied to 3D and projected mass maps,
and to join density of multiple tracers;

- biasing of over-dense/under-dense regions can also be computed =
statistical properties of clipped regions;



Charting PT

number of loops in standard PT for Gaussian Initial
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Kernels in Perturbation Theory calculations
FB, Taruya, Nishimichi, ‘| 2
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Expression of the density kernel for the propagator at |-loop order
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The spherical collapse: the solution for
specific initial conditions

The radius d*R GM(< R)

evolution d#2 R2

20~
The exact non-linear

mapping for spherically
symmetric initial field
(for growing mode
setting)

1.5}

10 -

PNL(<n)—1

0.5+

For spherical symmetry perturbations there exists a function T that gives
the density at time N knowing the density po within the same Lagrangian

radius at time No.
Cp (105 posM0)



The result

The rate functions, Legendre Transform of the cumulant generating
function,

-~ o TLAP
p({ Ak, Bi},m) = Z<Hi PR )em— Vv({ ok, R },m) Z)\zpz p({ ks Ri},m)

pi=0

have, according to the contraction principle, the following time
dependence,

1/3 /
\Ij({pka Rk}ﬂ?) =W <{C(pk777777/)7 ch (101]?/7377777 )}777/>

P

In other words we know how to compute the cumulant
generating function of densities in concentric cells starting
with specific initial conditions.



The mathematical part, construction of the

cumulant generating function
from ideas in FB' 94 see also FB & Valageas '00 and fully developed in Valageas '02

Can we get the whole generating function of H Ap
the cumulants ? P(L) = 2::0 i) IL;p;!
It is given by the following relation (multi- exp [p({Ai})] = (exp Z Aipi))

dimensional Laplace transform of joint-PDFs)

= /OOO I;d p; P({pi}) exp Z)\zpz
Formal solution exp [p({Ai})] = /D[T(f)]P[T(f)] exp(Aipi [7(Z)])

Principle of the calculations : in the small variance approximation one
can look for the most probable configuration - for fixed pi - and
compute the resulting cumulant generating function using the

, , . o steepest-descent method.
The (conjectured) solution for spherical cells: an initial

spherical perturbation the profile of which can be
computed from spherical collapse solution. 0; = CSC (7-2)

finite number of variables



The 1-cell rate function and cumulant generating function
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Example of contribution to the 3- to n-point
cumulants at tree order

&) = of (dk; P(k1)P(k2)

XFQ(kl,kz) ( R)W(k’QR)W(‘kl‘FkﬂR)
x  (8%)?

it has a non trivial dependence

on the wave vectors through the
functions F3 and F2
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Predictions for cumulants and PDFs...

Prediction at tree order is
very accurate

Let us assume that,
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Application 1: 1-cell PDF and stats

The inverse Laplace transform,

requires integration into complex plane.
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low density approximation

P(p) exp [—¥(p)]

FB Pichon, Codis 'l 3
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Comparison with simulations:

the 1-point PDF shape
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Residuals as a function of R
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