

Max Planck Institute for Astrophysics

The Galactic Faraday sky

What it is, how it's done, and why it's useful

Niels Oppermann

with

G. Robbers, T.A. Enßlin, H. Junklewitz, M.R. Bell, A. Bonafede, R. Braun, J.-A.C. Brown, T.E. Clarke, I.J. Feain, B.M. Gaensler, A. Hammond, L. Harvey-Smith, G. Heald, M. Johnston-Hollitt, U. Klein, P.P. Kronberg, S.A. Mao, N.M. McClure-Griffiths, S.P. O'Sullivan, L. Pratley, T. Robishaw, S. Roy, D.H.F.M. Schnitzeler, C. Sotomayor-Beltran, J. Stevens, J.M. Stil, C. Sunstrum, A. Tanna, A.R. Taylor, and C.L. Van Eck

Polarized Foreground Workshop, Garching, 2012-11-26

What it is

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

41 330 data points

<ロト <回ト < 注ト < 注ト

Challenges

- Regions without data
- Uncertain error bars:
 - complicated observations
 - *n*π-ambiguity
 - extragalactic contributions unknown

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How it's done

▲□▶ 4畳▶ 4 差▶ 4 差▶ 差 少 Q Q

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 2

$$d = Rs + n$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(日)、(四)、(E)、(E)、(E)

$$S(\hat{n},\hat{n}')=\int \mathcal{D}s \; s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$\Rightarrow S_{(\ell m),(\ell' m')} = \int \mathcal{D}s \ s_{\ell m} s^*_{\ell' m'} \mathcal{P}(s)$$

$$S(\hat{n}, \hat{n}') = \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$

= $S(\hat{n} \cdot \hat{n}')$
 $\Rightarrow S_{(\ell m),(\ell'm')} = \int \mathcal{D}s \ s_{\ell m}s^*_{\ell'm'}\mathcal{P}(s)$
= $\delta_{\ell\ell'}\delta_{mm'}C_{\ell}$
 \hookrightarrow angular power spectrum

・ロト・日本・日本・日本・日本・日本

$$S(\hat{n}, \hat{n}') = \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$
$$= S(\hat{n} \cdot \hat{n}')$$
$$\Rightarrow S_{(\ell m),(\ell' m')} = \int \mathcal{D}s \ s_{\ell m}s^*_{\ell' m'}\mathcal{P}(s)$$
$$= \delta_{\ell\ell'}\delta_{mm'}C_{\ell}$$
$$\hookrightarrow \text{ angular power spectrum}$$

$$N_{ij} = \delta_{ij}\sigma_i^2$$

(uncorrelated noise)

(ロ)、(型)、(E)、(E)、 E) の(の)

$$S_{(\ell m),(\ell' m')} = \delta_{\ell \ell'} \delta_{m m'} C_{\ell} \qquad N_{ij} = \delta_{ij} \eta_i \sigma_i^2$$

Problem: $\mathcal{P}(s|d)$ is non-Gaussian. Solution: Find Gaussian $\mathcal{G}(s - m, D)$, that best approximates $\mathcal{P}(s|d)$.

Problem: $\mathcal{P}(s|d)$ is non-Gaussian. Solution: Find Gaussian $\mathcal{G}(s - m, D)$, that best approximates $\mathcal{P}(s|d)$.

- R: multiplication with p(b) and projection on directions of sources

$$\blacktriangleright N_{ij} = \delta_{ij}\eta_i\sigma_i^2$$

э

<ロ> (四) (四) (日) (日) (日)

posterior mean of the signal

uncertainty of the signal map

posterior mean of the Faraday depth

Why it's useful

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

- * ロ * * 母 * * 注 * * 注 * の < ?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

・ロト ・聞ト ・ヨト ・ヨト

æ

Summary

- New map of the Galactic contribution to Faraday depth
- Extragalactic contributions filtered out via spatial correlation structure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Potential for studies of
 - Interstellar medium
 - Galactic magnetic field
 - Extragalactic sources

All results available at

http://www.mpa-garching.mpg.de/ift/faraday/

Backup

↓□▶
↓ ↓ ≡ ↓ ↓ ≡ ↓ <
↓ ↓ ⊕ ▶
↓ ↓ ≡ ▶
↓ ↓ ⊕ ▶
↓ ↓ ≡ ▶
↓ ↓ ⊕ ▶
↓ ↓ ≡ ▶
↓ ↓ ⊕ ▶
↓ ↓ ≡ ▶
↓ ↓ ⊕ ▶
↓ ↓ ⊕ ▶
↓ ↓ ⊕ ▶
↓ ↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ▶
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽
↓ ⊕ ₽

Assumptions:

Assumptions:

signal field statistically homogeneous Gaussian random field

Assumptions:

signal field statistically homogeneous Gaussian random field

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • ○ � ○