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Two important (to me) questions

• What am I doing here ?

– Planck release of temperature only CMB maps is about to happen.

• Will I get stoned ?

– For CMB cleaning, I will advocate a non-parametric approach.

Note: all figures from data simulated by the Planck Sky Model (see J. Delabrouille’s talk).



CMB cleaning

[•] Tasks:

• Combine sky maps to disentangle astrophysical emissions: component separation proper.

or

• Focus on CMB extraction/cleaning (this talk).

[•] A range of options for CMB cleaning:

• Very blind: template fitting, the ILC family,. . .

• Non-parametric: assumes some foreground coherence (this talk),

• Parametric: assumes SEDs, spectral indices, power laws. . .



Combining channels with the Best Linear Unbiased Estimator (BLUE)

•The BLUE

Given contaminated observations of s with known gains ai, that is, xi = ais+ ni, or

x = as+ n

where contamination n is noise+foreground, the linear estimator

ŝ =
∑
i

wixi = w†x

of s with zero bias (w†a = 1) and minimum variance has weights given by

w =
C−1a

a†C−1a
C

def
= Cov(x) [the BLUE]

• Beauty of the BLUE: it only requires knowing:

1) the gain vector a i.e. a CMB-calibrated instrument

2) the covariance matrix of the data C = Cov(x)

• Replacing the (unknown) covariance matrix C by its sample estimate Ĉ = 1/P
∑

p x(p)x(p)†

yields the super simple ILC (Internal Linear Combination).



A plain, low-resolution (1 degree) ILC map from PSM simulations

Is it good enough ? Can we do better? Can we do better at high resolution ?



Beating (up) the BLUE

• Q: Given that

• Linearity is a must,

• The BLUE is MSE-optimal among linear filters,

can you beat it ? What could go wrong ?

• A: Many things can go wrong in many ways !

• Total mean-square error may not be the best criterion, after all.
It lumps together foregrounds and noise. And also multipoles. And also sky regions.

• Need to adapt to ‘local conditions’:
We do not fight the same ennemy in various parts of the sky, in various multipole ranges.
The case for harmonic filtering or even wavelet/needlet filtering.

• Need to estimate the data covariance matrix.
− Which covariance matrix ? (Pixel space, harmonic space, wavelet/needlet space ?)
− Direct estimation from the data ? Beware chance correlations !
− Maybe some modelling of the covariance matrix could help. . .



The ILC in harmonic space

ILC coefficients in harmonic space (for maps rebeamed at a 5’).



ILC, template fitting, and chance correlation

Template fitting cleans map x1 using the x2 template according to x1 − 〈x1x2〉
〈x2

2〉
· x2.

That does a perfect job with perfect templates, perfectly uncorrelated with the CMB.

Otherwise. . . let’s look at a toy example:
a contaminated channel x1 = s+ αf and an (approximate) template x2 = f ′. Then:

ŝ = x1 −
〈x1x2〉
〈x2

2〉
· x2 = s −

〈sf ′〉
〈f ′2〉

· f ′︸ ︷︷ ︸
Chance corr.

+α
(
f −
〈ff ′〉
〈f ′2〉

· f ′
)

︸ ︷︷ ︸
Non-rigid scaling

• The error due to chance correlation is independent of the level of α of contamination.

One pays the price for any template thrown at the data, whether or not it’s in there.

• If one assumes rigid scaling f = f ′, chance correlation dominates the error.

What is hitting us harder: non-rigid scaling or chance chance correlation ?
You tell me about the former, I tell you about the latter.



ILC, chance correlation and harmonic weighting

Residuals (ĈMB−CMB) for 3 ILC’s at low-resolution (1 degree) on a ±15µK scale.

• Left: Plain pixel-based ILC.
• Center: Same with chance correlation CMB/fgd articially removed.
• Right: Covariance matrix estimated from weighted spherical harmonic coefficients.



From the BLUE to SMICA

We saw the ‘optimality’ of the BLUE but

• It must be made multipole dependent. That’s easy:

ŝ`m = w†`x`m, w` =
C−1
` a

a†C−1
` a

where the Nchan ×Nchan matrix C` contains all the auto- and cross-spectra.

• The spectra C` are unknown and using the empirical covariance matrices:

Ĉ`
def
=

1

2`+ 1

∑
m

x`mx
†
`m

as a plugin replacement is not enough to tame chance correlation at large scales.

• So we set up a spectral model C`(θ):

C`(θ) = aa†C`︸ ︷︷ ︸
CMB

+ Cgal
` (θgal)︸ ︷︷ ︸

galactic fgd

+ Cefg
` (θefg)︸ ︷︷ ︸

extra galactic

+ diag(σ2
i`)︸ ︷︷ ︸

noise

, θ = {C`, θgal, θefg, σ2
i`},

and fit it (in the maximum likelihood sense) to Ĉ`, and use the result C`(θ̂) in the BLUE.

• → Spectral Matching Independent Component Analysis (SMICA).



Foreground models: parametric, or not.

• The global spectral model C`(θ) = aa†C`︸ ︷︷ ︸
CMB

+ FP`F
†︸ ︷︷ ︸

foreground

+ diag(σ2
i`)︸ ︷︷ ︸

noise

,

Here, F is an Nchan × f matrix and P` an f × f positive matrix depending on `.

• A rigid model: F is made of known emission laws: F = [adust asynch aCO . . .].

Then matrix P` contains the auto- and cross-spectra of those f foregrounds.

• Sky-varying emissivity costs one column: P = [adust ∂adust/∂T asynch aCO . . .] at first order.

• A rigid but more flexible model, e.g. P = P(T ) = [adust(T ) asynch aCO . . .].

•• The foreground emission matrix P can be controlled by many parameters.

•• Q: How many at most? A: as much as you want! (well, kind of).

Technically, spectral diversity guarantees the blind identifiability of the total foreground emission
with f as large as Nchan − 1.

The underlying model is that f < Nchan templates with arbitrary emissivities, arbitrary spectra
and arbitrary correlations.

We consider here a ‘catch-all’ foreground component able to confine all the coherent contami-
nation into a non-parametric ‘foreground subspace’ of dimension Nchan − 1 at most.



Models for polarization analysis

Now that we disposed of the painful need of parametric foreground modeling,
we can serenely addreess polarization ;-)

• T +E. For instance, for Planck, stacking the T modes of the 9 temperature channels and the
E modes of the 7 polarized channels, we may use

C` = Cov(x`m) = Cov
[
xT`m
xE`m

]
=
[
a 0
0 a

][
CTT(`) CTE(`)
CET(`) CEE(`)

][
a 0
0 a

]†
+ FP`F

† + N`

• B only. Measure of the tensor-to-scale ratio r in presence of foregrounds using SMICA.
See paper by Betoule et al. 2009.



Some results from early (2008) Planck simulations

TT, TE, EE spectra using a 7-dimensional foreground component with a free (non-parametric)
(9 + 7)× 7 foreground emission matrix P.
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CMB power spectra, from top to bottom : TT, EE, and TE

Error bars ±1σ from the Fisher information matrix.



Notes and conclusion

Notes:

• SMICA as a spectral estimator.
Actually, it does component separation (at the map level) optionally after spectral separation.

• SMICA also is a likelihood (possiby parametric). See work on PLIK at IAP.

• SMICA as a calibrator.

Conclusions:

Some continuity: template fitting → ILC → non-parametric SMICA.

Non-parametric foreground modeling with SMICA.
All the more useful for CMB cleaning as long as polarized foreground models remain uncertain.

The parametric / non- parametric also is a tradeoff between statistical efficiency and robustness.
Need to learn from forthcoming Planck data and simulations.

Non parametric: Let your data talk and listen to them.


